Skip to main content

Advertisement

Log in

Welding Dissimilar Alloys of CoCrFeMnNi High-Entropy Alloy and 304 Stainless Steel Using Gas Tungsten Arc Welding

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The weldability of a CoCrFeMnNi high-entropy alloy (HEA) and 304 stainless steel (304 SS) was investigated to determine their potential for application in the nuclear and aerospace fields. Autogenous dissimilar butt welding was performed using gas tungsten arc welding, and the resulting joint was complete with no defects. SEM/XRD analysis showed that the fusion zone microstructure consisted of a single fcc phase without the formation of intermetallic compounds. However, there is an unmixed zone near the 304 SS side, which can be attributed to subcooling of the composition caused by the lower liquidus temperature of the bulk weld metal than that of the base metal. Furthermore, a small increase in the hardness of the fusion zone compared with that of the CoCrFeMnNi HEA was observed. These results can be attributed to the grain refinement of the weld and the strengthening effect owing to the incorporation of carbon. The joints exhibited a tensile strength of ~ 465 MPa and ductility of 38%, where the strength was comparable to that of the CoCrFeMnNi HEA, and a joint fracture was found at the side of the CoCrFeMnNi HEA. This indicates that the weldments are suitable for room temperature structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.B. Miracle, High Entropy Alloys as a Bold Step Forward in Alloy Development, Nat. Commun., 2019, 10(1), p 1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  3. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  4. N.K. Adomako, J.H. Kim, and Y.T. Hyun, High-Temperature Oxidation Behaviour of Low-Entropy Alloy to Medium- and High-Entropy Alloys, J. Therm. Anal. Calorim., 2018, 133(1), p 13–26.

    Article  CAS  Google Scholar 

  5. H.S. Cho, S.J. Bae, Y.S. Na, K.S. Lee, J.H. Kim, and D.G. Lee, Influence of Reduction Ratio on the Microstructural Evolution and Subsequent Mechanical Properties of Cold-Drawn Co10Cr15Fe25Mn10Ni30V10 High Entropy Alloy Wires, J. Alloys Compd., 2020, 821, 153526.

    Article  CAS  Google Scholar 

  6. B. Cantor, Multicomponent and High Entropy Alloys, Entropy, 2014, 16(9), p 4749–4768.

    Article  Google Scholar 

  7. S.J. Zinkle and G.S. Was, Materials Challenges in Nuclear Energy, Acta Mater., 2013, 61(3), p 735–758.

    Article  CAS  Google Scholar 

  8. P. Yvon, M. Le Flem, C. Cabet, and J.L. Seran, Structural Materials for next Generation Nuclear Systems: Challenges and the Path Forward, Nucl. Eng. Des., 2015, 294, p 161–169.

    Article  CAS  Google Scholar 

  9. S.S. Huang, H.Q. Guan, Z.H. Zhong, M. Miyamoto, and Q. Xu, Effect of He on the Irradiation Resistance of Equiatomic CoCrFeMnNi High-Entropy Alloy, J. Nucl. Mater., 2022, 561, 153525.

    Article  CAS  Google Scholar 

  10. L. Yang, H. Ge, J. Zhang, T. Xiong, Q. Jin, Y. Zhou, X. Shao, B. Zhang, Z. Zhu, S. Zheng, and X. Ma, High He-Ion Irradiation Resistance of CrMnFeCoNi High-Entropy Alloy Revealed by Comparison Study with Ni and 304SS, J. Mater. Sci. Technol., 2019, 35(3), p 300–305.

    Article  CAS  Google Scholar 

  11. N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy under Ion Irradiation, Acta Mater., 2016, 113, p 230–244.

    Article  CAS  Google Scholar 

  12. A. Arab, Y. Guo, Q. Zhou, and P. Chen, Fabrication of Nanocrystalline AlCoCrFeNi High Entropy Alloy through Shock Consolidation and Mechanical Alloying, Entropy, 2019, 21(9), p 880.

    Article  CAS  PubMed Central  Google Scholar 

  13. D. Shaysultanov, N. Stepanov, S. Malopheyev, I. Vysotskiy, V. Sanin, S. Mironov, R. Kaibyshev, G. Salishchev, and S. Zherebtsov, Friction Stir Welding of a Carbon-Doped CoCrFeNiMn High-Entropy Alloy, Mater. Charact., 2018, 145, p 353–361.

    Article  CAS  Google Scholar 

  14. M. Sun, S.T. Niknejad, G. Zhang, M.K. Lee, L. Wu, and Y. Zhou, Microstructure and Mechanical Properties of Resistance Spot Welded AZ31/AA5754 Using a Nickel Interlayer, Mater. Des., 2015, 87, p 905–913.

    Article  CAS  Google Scholar 

  15. P. Penner, L. Liu, A. Gerlich, and Y. Zhou, Feasibility Study of Resistance Spot Welding of Dissimilar Al/Mg Combinations with Ni Based Interlayers, Sci. Technol. Weld. Join., 2013, 18(7), p 541–550.

    Article  CAS  Google Scholar 

  16. Z. Wu, S.A. David, Z. Feng, and H. Bei, Weldability of a High Entropy CrMnFeCoNi Alloy, Scr. Mater., 2016, 124, p 81–85.

    Article  CAS  Google Scholar 

  17. N. Kashaev, V. Ventzke, N. Petrov, M. Horstmann, S. Zherebtsov, D. Shaysultanov, V. Sanin, and N. Stepanov, Fatigue Behaviour of a Laser Beam Welded CoCrFeNiMn-Type High Entropy Alloy, Mater. Sci. Eng. A, 2019, 766, 138358.

    Article  CAS  Google Scholar 

  18. N.K. Adomako, G. Shin, N. Park, K. Park, and J.H. Kim, Laser Dissimilar Welding of CoCrFeMnNi-High Entropy Alloy and Duplex Stainless Steel, J. Mater. Sci. Technol., 2021, 85, p 95–105.

    Article  CAS  Google Scholar 

  19. J.P. Oliveira, J. Shen, Z. Zeng, J.M. Park, Y.T. Choi, N. Schell, E. Maawad, N. Zhou, and H.S. Kim, Dissimilar Laser Welding of a CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Scr. Mater., 2022, 206, 114219.

    Article  CAS  Google Scholar 

  20. J.P. Oliveira, A. Shamsolhodaei, J. Shen, J.G. Lopes, R.M. Gonçalves, M. de Brito Ferraz, L. Piçarra, Z. Zeng, N. Schell, N. Zhou, and H. Seop Kim, Improving the Ductility in Laser Welded Joints of CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Mater. Des., 2022, 219, 110717.

    Article  CAS  Google Scholar 

  21. F. Yusof and M.F. Jamaluddin, Welding Defects and Implications on Welded Assemblies, Comprehensive Materials Processing, Elsevier, 2014, p 125–134, doi:https://doi.org/10.1016/B978-0-08-096532-1.00605-1.

  22. T. Soysal, S. Kou, D. Tat, and T. Pasang, Macrosegregation in Dissimilar-Metal Fusion Welding, Acta Mater., 2016, 110, p 149–160.

    Article  CAS  Google Scholar 

  23. H. Nam, S. Park, E.-J. Chun, H. Kim, Y. Na, and N. Kang, Laser Dissimilar Weldability of Cast and Rolled CoCrFeMnNi High-Entropy Alloys for Cryogenic Applications, Sci. Technol. Weld. Join., 2020, 25(2), p 127–134.

    Article  CAS  Google Scholar 

  24. S. Park, H. Nam, Y. Na, H. Kim, Y. Moon, and N. Kang, Effect of Initial Grain Size on Friction Stir Weldability for Rolled and Cast CoCrFeMnNi High-Entropy Alloys, Met. Mater. Int., 2020, 26(5), p 641–649.

    Article  CAS  Google Scholar 

  25. E.A. Eid and M.M. Sadawy, Role of Effective Strain During Cold Rolling Deformation on Mechanical Characteristics of AISI 304 Steel, Met. Mater. Int., 2021, 27(11), p 4536–4549.

    Article  CAS  Google Scholar 

  26. G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, Ł Gondek, M. Marciszko, B. Pawłowski, K. Wieczerzak, and P. Bała, The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel, Metall. Mater. Trans. A, 2017, 48(10), p 4999–5008.

    Article  CAS  Google Scholar 

  27. M. Bigdeli Karimi, H. Arabi, A. Khosravani, and J. Samei, Effect of Rolling Strain on Transformation Induced Plasticity of Austenite to Martensite in a High-Alloy Austenitic Steel, J. Mater. Process. Technol., 2008, 203(1–3), p 349–354.

    Article  CAS  Google Scholar 

  28. A.L. Schaeffler, Constitution Diagram for Stainless Steel Weld Metal, Met. Prog., 1949, 56(11), p 680.

    CAS  Google Scholar 

  29. H. Luo, Z. Li, and D. Raabe, Hydrogen Enhances Strength and Ductility of an Equiatomic High-Entropy Alloy, Sci. Rep., 2017, 7(1), p 9892.

    Article  PubMed  PubMed Central  Google Scholar 

  30. J.X. Fu, C.M. Cao, W. Tong, Y.X. Hao, and L.M. Peng, The Tensile Properties and Serrated Flow Behavior of a Thermomechanically Treated CoCrFeNiMn High-Entropy Alloy, Mater. Sci. Eng. A, 2017, 690, p 418–426.

    Article  CAS  Google Scholar 

  31. G. Polat and H. Kotan, Effect of Composition, Mechanical Alloying Temperature and Cooling Rate on Martensitic Transformation and Its Reversion in Mechanically Alloyed Stainless Steels, Met. Mater. Int., 2021, 27(10), p 3765–3775.

    Article  CAS  Google Scholar 

  32. H. Kotan, G. Polat, and A. Büşra Yildiz, Effect of Hf Additions on Phase Transformation, Microstructural Stability, and Hardness of Nanocrystalline 304L Stainless Steels Synthesized by Mechanical Alloying, Adv. Powder Technol., 2021, 32(8), p 3117–3124.

    Article  CAS  Google Scholar 

  33. J. Li, W. Pei, M. Zhao, D. Zhao, and X. Shi, Study of Cold Rolling on the Transformation Mechanism, Microstructure, and Properties of 304 Austenitic Stainless Steel, Steel Res. Int., 2022, 93(4), p 2100341.

    Article  CAS  Google Scholar 

  34. J.A. Brooks and A.W. Thompson, Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds, Int. Mater. Rev., 1991, 36(1), p 16–44.

    Article  CAS  Google Scholar 

  35. K. Rajasekhar, C.S. Harendranath, R. Raman, and S.D. Kulkarni, Microstructural Evolution during Solidification of Austenitic Stainless Steel Weld Metals: A Color Metallographic and Electron Microprobe Analysis Study, Mater. Charact., 1997, 38(2), p 53–65.

    Article  CAS  Google Scholar 

  36. D. Kianersi, A. Mostafaei, and A.A. Amadeh, Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel Sheets: Phase Transformations, Mechanical Properties and Microstructure Characterizations, Mater. Des., 2014, 61, p 251–263.

    Article  CAS  Google Scholar 

  37. N. Kumar, M. Mukherjee, and A. Bandyopadhyay, Comparative Study of Pulsed Nd:YAG Laser Welding of AISI 304 and AISI 316 Stainless Steels, Opt. Laser Technol., 2017, 88, p 24–39.

    Article  CAS  Google Scholar 

  38. B. Fu, C. Pei, Y. Guo, L. Fu, and A. Shan, Strength and Strain-Hardening Enhancement by Generating Hard Delta-Ferrite in Twinning-Induced Plasticity Steel, Mater. Sci. Technol., 2020, 36(7), p 827–834.

    Article  CAS  Google Scholar 

  39. K.-H. Tseng and C.-Y. Hsu, Performance of Activated TIG Process in Austenitic Stainless Steel Welds, J. Mater. Process. Technol., 2011, 211(3), p 503–512.

    Article  CAS  Google Scholar 

  40. G. Laplanche, O. Horst, F. Otto, G. Eggeler, and E.P. George, Microstructural Evolution of a CoCrFeMnNi High-Entropy Alloy after Swaging and Annealing, J. Alloys Compd., 2015, 647, p 548–557.

    Article  CAS  Google Scholar 

  41. M. Milad, N. Zreiba, F. Elhalouani, and C. Baradai, The Effect of Cold Work on Structure and Properties of AISI 304 Stainless Steel, J. Mater. Process. Technol., 2008, 203(1–3), p 80–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Central Iron & Steel Research Institute, for providing Thermo-Calc software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Cheng.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Qi, Y., Cheng, Q. et al. Welding Dissimilar Alloys of CoCrFeMnNi High-Entropy Alloy and 304 Stainless Steel Using Gas Tungsten Arc Welding. J. of Materi Eng and Perform 33, 3273–3282 (2024). https://doi.org/10.1007/s11665-023-08229-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08229-1

Keywords

Navigation