Skip to main content
Log in

Influence of grain size and stacking-fault energy on deformation twinning in fcc metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article investigates the microstructural variables influencing the stress required to produce deformation twins in polycrystalline fcc metals. Classical studies on fcc single crystals have concluded that the deformation-twinning stress has a parabolic dependence on the stacking-fault energy (SFE) of the metal. In this article, new data are presented, indicating that the SFE has only an indirect effect on the twinning stress. The results show that the dislocation density and the homogeneous slip length are the most relevant microstructural variables that directly influence the twinning stress in the polycrystal. A new criterion for the initiation of deformation twinning in polycrystalline fcc metals at low homologous temperatures has been proposed as (σ tw σ 0)/G=C(d/b)A, where σ tw is the deformation twinning stress, σ 0 is the initial yield strength, G is the shear modulus, d is the average homogeneous slip length, b is the magnitude of the Burger’s vector, and C and A are constants determined to have values of 0.0004 and −0.89, respectively. The role of the SFE was observed to be critical in building the necessary dislocation density while maintaining relatively large homogeneous slip lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Trans. A, 1997, vol. 2A, pp. 1781–95.

    Article  Google Scholar 

  2. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  3. L. Rémy: Metall. Trans. A, 1981, vol. 12A, pp. 387–408.

    Google Scholar 

  4. J.A. Venables: J. Phys. Chem. Solids, 1964, vol. 25, pp. 693–700.

    Article  CAS  Google Scholar 

  5. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 1353–63.

    Article  CAS  Google Scholar 

  6. L. Rémy and A. Pineau: Mater. Sci. Eng., 1976, vol. 26, pp. 123–32.

    Article  Google Scholar 

  7. B.W. Oh, S.J. Chao, Y.G. Kim, Y.P. Kim, and S.H. Hong: Mater. Sci. Eng. A, 1995, vol. 197A, pp. 147–56.

    Google Scholar 

  8. E. Romhanji, V. Milenkovic, and D. Drobjnak: Z. Metallkd., 1992, vol. 2, pp. 110–14.

    Google Scholar 

  9. D. Lahaie, J.D. Embury, M.M. Chadwick, and G.T. Gray III: Scripta Metall., 1992, vol. 27, pp. 139–42.

    Article  CAS  Google Scholar 

  10. S.G. Song and G.T. Gray III: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2665–76.

    CAS  Google Scholar 

  11. G.T. Gray III: Encyclopedia Mater. Sci., 1997, Pergamon Press, Oxford, suppl. vol. 2, pp. 859–65.

    Google Scholar 

  12. Y. Inokuti and B. Cantor: Acta Metall., 1982, vol. 30, pp. 343–56.

    Article  CAS  Google Scholar 

  13. Y. Inokuti and B. Cantor: Scripta Metall., 1976, vol. 10, pp. 655–59.

    Article  CAS  Google Scholar 

  14. S.R. Kalidindi, A. Abusafieh, and E. El-Danaf: Exp. Mech., 1997, vol. 37, pp. 213–18.

    Article  Google Scholar 

  15. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  16. A. Howie and P.R. Swarnn: Phil. Mag., 1961, vol. 6, pp. 1215–26.

    CAS  Google Scholar 

  17. A.W. Thompson and M.I. Baskes: Acta. Metall., 1973, vol. 21, pp. 301–08.

    Google Scholar 

  18. S. Asgari: PhD thesis, Drexel University, 1997.

  19. A.W. Thompson, M.I. Baskes, and W.F. Flanagan: Acta Metall., 1973, vol. 21, pp. 1017–28.

    Article  CAS  Google Scholar 

  20. H. Dong and A.W. Thompson: Metall. Trans. A, 1985, vol. 16A, pp. 1025–29.

    CAS  Google Scholar 

  21. A.D. Rollet, U.F. Kocks, J.D. Embury, M.G. Stout, and R.D. Doherty: in Strength of Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1988, vol. 11, p. 265.

    Google Scholar 

  22. A.S. Argon and P. Hassen: Acta Metall. Mater., 1993, vol. 41, pp. 3289–3306.

    Article  CAS  Google Scholar 

  23. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  24. T.L. Johnston and C.E. Feltner: Metall. Trans., 1970, vol. 1, pp. 1161–67.

    CAS  Google Scholar 

  25. G.T. Gray III: Acta Metall., 1988, vol. 36, pp. 1745–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Danaf, E., Kalidindi, S.R. & Doherty, R.D. Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metall Mater Trans A 30, 1223–1233 (1999). https://doi.org/10.1007/s11661-999-0272-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-999-0272-9

Keywords

Navigation