Skip to main content
Log in

Microstructural Evolution in the Transient-Liquid-Phase Bonding Area of IN-738LC/BNi-3/IN-738LC

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Transient-liquid-phase (TLP) bonding of the IN-738LC base alloy with BNi-3 interlayer was investigated in this article. Effects of the TLP bonding thermal cycle on the base alloy were studied microstructurally and macrostructurally. Microscopic investigation revealed that the microstructural evolution in the TLP bonding area was affected substantially by the bonding temperature. Therefore, a critical bonding temperature (T cr ) was defined for TLP bonding of IN-738LC/BNi-3/IN-738LC samples. Unlike bonding below T cr , TLP bonding at temperatures higher than T cr resulted in formation of individual γ-γ′ colonies in the adjacent base alloy to TLP bonding zone and caused significant reduction in the isothermal solidification kinetic. During TLP bonding at temperatures less than T cr , B-rich precipitates with two different morphologies, blocky and acicular, were formed in the adjacent base alloy to the TLP bonding zone. Microhardness and three-point bending tests were carried out in order to determine the effect of these formed constituents in the TLP bonding area on the mechanical properties of bonded samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  3. The fraction of area of TLP zone intermetallics to the area of the TLP zone was selected as AF TLP zoneI .

  4. The fraction of the boride area to the DAZ area was selected as AF DAZI .

  5. The maximum formation depth of boride in the base alloy from the L/S interface was selected as FD DAZI .

  6. F.C.: Furnace cooled (cooling rate ∼10 °C/min).

  7. The fraction of the DAZ constituent area to the DAZ area was selected as the area fraction of the DAZ constituent.

References

  1. D.F. Paulonis, D.S. Duvall, and W.A. Owczarski: U.S. Patent 3,678,570, 1972

  2. W.D. MacDonald, T.W. Eagar: Metal Science of Joining Conf., TMS, Warrendale, PA, 1992, pp. 93–100

    Google Scholar 

  3. C.G. Bieber, Suffern, and J.J. Galka: U.S. Patent 3,459,545, 1969

  4. IN-738: Technical Data, The International Nickel Company Inc., New York, NY, 1981, pp. 1–11

  5. R. Kayacana, R. Varola, O. Kimilli: Mater. Res. Bull., 2004, vol. 39, pp. 2171–86

    Article  CAS  Google Scholar 

  6. M.H. Haafkens, G.H. Matthey: Weld. J., 1982, vol. 61 (11), pp. 25–30

    CAS  Google Scholar 

  7. T.J. Moore, K.H. Holko: Weld. J., 1970, vol. 49 (9), pp. 395s–409s

    Google Scholar 

  8. J.H.G. Mattheij: Mater. Sci. Technol., 1985, vol. 1 (8), pp. 608–12

    CAS  Google Scholar 

  9. O.A. Idowu, N.L. Richards, M.V. Chaturvedi: Mater. Sci. Eng. A, 2005, vol. 397 (1–2), pp. 98–112

    Google Scholar 

  10. N.P. Wikstrom, O.A. Ojo, M.V. Chaturvedi: Mater. Sci. Eng. A, 2006, vol. 417 (1–2), pp. 299–306

    Google Scholar 

  11. O.A. Ojo, N.L. Richards, M.C. Chaturvedi: Sci. Technol. Weld. Join., 2004, vol. 9 (6), pp. 532–40

    Article  CAS  Google Scholar 

  12. O.A. Idowu, O.A. Ojo, M.V. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2787–96

    Article  CAS  Google Scholar 

  13. A. Rabinkin: Sci. Technol. Weld. Join., 2004, vol. 9 (3), pp. 181–99

    Article  CAS  Google Scholar 

  14. W.E. Gale, E.R. Wallach: J. Mater. Sci., 1992, vol. 27, pp. 5653–60

    Article  CAS  Google Scholar 

  15. Metals Handbook, vol. 10, Material Characterization, 9th ed., ASM, Metals Park, OH, 1986, p. 460

  16. A.K. Koul, R. Thamburaj: Metall. Trans. A, 1985, vol. 16A, pp. 17–26

    CAS  Google Scholar 

  17. A.K. Koul, D. Morphy: Microstruct. Sci., 1982, vol. 11, pp. 79–88

    Google Scholar 

  18. J.C. Beddoes, W. Wallace: Metallography, 1980, vol. 13 (2), pp. 185–94

    Article  CAS  Google Scholar 

  19. R.A. Steven, P.E.J. Flewitt: J. Mater. Sci., 1978, vol. 13 (2), pp. 367–76

    Article  CAS  Google Scholar 

  20. R. Rosenthal, D.R.F. West: Mater. Sci. Technol., 1999, vol. 15 (12), pp. 1387–94

    CAS  Google Scholar 

  21. A.K. Koul, R. Castillo: Metall. Trans. A, 1988, vol. 19A, pp. 2049–66

    CAS  Google Scholar 

  22. D.S. Duvall and W.A. Owczarski: Weld. J., 1971, pp. 401s–409s

  23. W. Hoffelner, E. Kny, R. Stickler, W.J. McCall: Z. Werkstofftech., 1979, vol. 10, pp. 84–92

    Article  CAS  Google Scholar 

  24. J.M. Vitek, D.W. Gandy, S.S. Babu, and G.J. Frederick: www.ornl.gov/~webworks/cppr/y2001/pres/120433.pdf

  25. W.D. MacDonald, T.W. Eagar: Ann. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46

    Article  CAS  Google Scholar 

  26. S. Lebaili, S. Hamar-Thibault: Acta Metall., 1987, vol. 35 (3), pp. 701–10

    Article  CAS  Google Scholar 

  27. S.K. Tung, L.C. Lim, M.O. Lai: Scripta Mater., 1996, vol. 34 (5), pp. 763–69

    Article  CAS  Google Scholar 

  28. A. Taylor: Trans. AIME, 1956, Oct., pp. 1356–62

  29. P. Willemin, M. Durand-Charre: J. Mater. Sci., 1990, vol. 25 (1A), pp. 168–74

    Article  CAS  Google Scholar 

  30. O. Kubaschewski, C.B. Alcock, P.J. Spencer: Materials Thermochemistry, 6th ed., Pergamon, Oxford, United Kingdom, 1993

    Google Scholar 

  31. M. Mosallaee, A. Ekrami, K. Ohsasa, K. Matsuura: Mater. Sci. Technol., 2008, vol. 24, pp. 449–56

    Article  CAS  Google Scholar 

  32. C.W. Sinclair, G.R. Purdy, J.E. Morral: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1187–92

    Article  CAS  Google Scholar 

  33. C.W. Sinclair: J. Phase Equilibria, 1999, vol. 20 (4), pp. 361–69

    Article  CAS  Google Scholar 

  34. J.D. Liu, T. Jin, N.R. Zhao, Z.H. Wang, X.F. Sun, H.R. Guan, Z.Q. Hu: Mater. Sci. Forum, 2007, vols. 546–549, pp. 1245–48

    Article  Google Scholar 

  35. B. Jahnke, J. Demny: Thin Solid Films, 1983, vol. 110, pp. 225–35

    Article  CAS  Google Scholar 

  36. S.K. Tung, L.C. Lim, O.M. Lai, H. Wu: Mater. Sci. Technol., 1997, vol. 13 (12), pp. 1051–56

    CAS  Google Scholar 

  37. R.B. Scarlin: Scripta Metall., 1976, vol. 10, pp. 711–15

    Article  CAS  Google Scholar 

  38. R. Rosenthal and D.R.F. West: Mater. Sci. Technol., 1986, vol. 2, Feb., pp. 169–74

Download references

Acknowledgments

The authors are grateful to the Advanced High-Temperature Material Laboratory, Hokkaido University (Japan), for the use of their vacuum furnace. One of the authors (MM) is also thankful to Yazd University (Iran) for the doctoral scholarship award and the Laboratory of Microstructural Control, Hokkaido University (Japan), for the internship award to carry out this research at their laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mosallaee.

Additional information

Manuscript submitted November 15, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mosallaee, M., Ekrami, A., Ohsasa, K. et al. Microstructural Evolution in the Transient-Liquid-Phase Bonding Area of IN-738LC/BNi-3/IN-738LC. Metall Mater Trans A 39, 2389–2402 (2008). https://doi.org/10.1007/s11661-008-9588-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9588-0

Keywords

Navigation