Skip to main content
Log in

Shape of the melt pool produced by a moving Gaussian heat source

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

A new dimensionless form of the solution to the problem of a Gaussian heat source in steady state on a semi-infinite solid is presented. Applying dimensional analysis, it is shown that dimensionless expressions of all characteristic values associated to an isotherm, as its maximum width or depth, are function only of the Rykalin number, Ry, and the dimensionless distribution parameter of the source, σ. Maps delimiting domains of Ry and σ that give specific regimes of the solution are developed. Using these maps, it is possible to know a priori the regime expected for the solution without solving the equation. The proposed expressions can be useful to predict the behaviour of the weld width and depth as function of process parameters in a number of processes involving a Gaussian heat source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Not applicable

Code availability

Not applicable

References

  1. Kaneko Y, Yamane S, Oshima K (2009) Numerical simulation of MIG weld pool in switchback welding. Weld World 53(11):R333–R341. https://doi.org/10.1007/BF03263476

    Article  Google Scholar 

  2. Tsai NS, Eagar TW (1985) Distribution of the heat and current fluxes in gas tungsten arcs. Metall Trans B 16(4):841–846. https://doi.org/10.1007/BF02667521

    Article  Google Scholar 

  3. Karkhin VA (2019) Energy characteristics of welding heat sources. In: Karkhin VA (ed) Thermal Processes in Welding. Springer Singapore, Singapore, pp 1–40. https://doi.org/10.1007/978-981-13-5965-1_1

    Chapter  Google Scholar 

  4. Wu CS, Gao JQ (2002) Analysis of the heat flux distribution at the anode of a TIG welding arc. Comput Mater Sci 24(3):323–327. https://doi.org/10.1016/S0927-0256(01)00254-3

    Article  CAS  Google Scholar 

  5. Mokrov O, Simon M, Schiebahn A, Reisgen U (2020) Concept for the calculation of the distribution of heat input in the cathode area by GMA welding. Weld World 64(9):1605–1614. https://doi.org/10.1007/s40194-020-00929-9

    Article  Google Scholar 

  6. Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 68(8):849–866

    Google Scholar 

  7. Patterson T, Hochanadel J, Sutton S, Panton B, Lippold J (2021) A review of high energy density beam processes for welding and additive manufacturing applications. Weld World 65:1235–1306. https://doi.org/10.1007/s40194-021-01116-0

    Article  Google Scholar 

  8. Ogino Y, Hirata Y, Kawata J, Nomura K (2013) Numerical analysis of arc plasma and weld pool formation by a tandem TIG arc. Weld World 57(3):411–423. https://doi.org/10.1007/s40194-013-0040-8

    Article  Google Scholar 

  9. Ogino Y, Asai S, Hirata Y (2018) Numerical simulation of WAAM process by a GMAW weld pool model. Weld World 62(2):393–401. https://doi.org/10.1007/s40194-018-0556-z

    Article  Google Scholar 

  10. Cline HE, Anthony TR (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48(9):3895–3900. https://doi.org/10.1063/1.324261

    Article  CAS  Google Scholar 

  11. Eagar T, Tsai N (1983) Temperature fields produced by traveling distributed heat sources. Weld J 62(12):346-S-355-S.

  12. Mendez PF, Lu Y, Wang Y (2018) Scaling analysis of a moving point heat source in steady-state on a semi-infinite solid. J Heat Transf 140(8):081301. https://doi.org/10.1115/1.4039353

    Article  CAS  Google Scholar 

  13. Van Elsen M, Baelmans M, Mercelis P, Kruth JP (2007) Solutions for modelling moving heat sources in a semi-infinite medium and applications to laser material processing. Int J Heat Mass Transf 50(23):4872–4882. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.044

    Article  CAS  Google Scholar 

  14. Panas AJ (2014) Moving heat sources. In: Hetnarski RB (ed) Encyclopedia of thermal stresses. Springer Netherlands, Dordrecht, pp 3215–3227. https://doi.org/10.1007/978-94-007-2739-7_397

    Chapter  Google Scholar 

  15. Lu Y, Mendez PF (2020) Characteristic values of the temperature field induced by a moving line heat source. Int J Heat Mass Transf 166:120671. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120671

    Article  Google Scholar 

  16. Bridgman PW (1931) Dimensional analysis. Yale University Press, New Haven, USA

    Google Scholar 

  17. Washio T, Motoda H Extension of dimensional analysis for scale-types and its application to discovery of admissible models of complex processes. In: 2nd Int. Workshop on Similarity Method, Stuttgart, Germany, 1999. pp 129-147

  18. Wang Y, Lu Y, Mendez PF (2019) Scaling expressions of characteristic values for a moving point heat source in steady state on a semi-infinite solid. Int J Heat Mass Transf 135:1118–1129. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.042

    Article  Google Scholar 

  19. Mendez PF (2010) Characteristic values in the scaling of differential equations in engineering. J Appl Mech 77(6):061017. https://doi.org/10.1115/1.4001357

    Article  Google Scholar 

  20. Rykalin NN, Nikolaev AV (1971) Welding arc heat flow. Weld World 9(3-4):112–133

    Google Scholar 

  21. Christensen N, Davies V, Gjermundsen K (1965) Distribution of temperature in arc welding. Br Weld J 12(2):54–75

    Google Scholar 

  22. Kumar P, Sinha AN (2019) Effect of heat input in pulsed Nd:YAG laser welding of titanium alloy (Ti6Al4V) on microstructure and mechanical properties. Weld World 63(3):673–689. https://doi.org/10.1007/s40194-018-00694-w

    Article  CAS  Google Scholar 

  23. Vahidshad Y, Khodabakhshi AH (2021) An investigation of different parameters on the penetration depth and welding width of Ti-6Al-4V alloy by plasma arc welding. Weld World 65(3):485–497. https://doi.org/10.1007/s40194-020-01024-9

    Article  CAS  Google Scholar 

  24. Liu ZM, Wu CS (2013) Visualization of dynamic keyhole behavior in waveform-controlled plasma arc welding. Weld World 57(5):719–725. https://doi.org/10.1007/s40194-013-0072-0

    Article  Google Scholar 

  25. Aibe A, Nomura K, Asai S (2020) Tomographic measurement of current density and heat input density for tilting TIG arc. Q J Jpn Weld Soc 38(1):25–33. https://doi.org/10.2207/qjjws.38.25

    Article  Google Scholar 

  26. Schoeck PA (1963) An investigation of the anode energy balance of high intensity arcs in argon. In: Ibele W (ed) Modern Developments in Heat Transfer. Academic Press, pp 353-400. https://doi.org/10.1016/B978-0-12-395635-4.50017-6

  27. Nestor OH (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J Appl Phys 33(5):1638–1648. https://doi.org/10.1063/1.1728803

    Article  Google Scholar 

  28. Trautmann M, Hertel M, Jäckel S, Füssel U (2019) A simulation-aided least squares reconstruction scheme for the measurement of welding process heat flux distributions. Weld World 63(6):1873–1882. https://doi.org/10.1007/s40194-019-00781-6

    Article  Google Scholar 

  29. Negi V, Chattopadhyaya S (2013) Critical assessment of temperature distribution in submerged arc welding process. Adv Mater Sci Eng 2013:543594–543599. https://doi.org/10.1155/2013/543594

    Article  Google Scholar 

  30. Carriere PR (2018) Energy and charge transfer during electron beam melting. McGill University, Montreal, Quebec

    Google Scholar 

  31. Drescher P, Sarhan M, Seitz H (2016) An investigation of sintering parameters on titanium powder for electron beam melting processing optimization. Materials 9(12):974. https://doi.org/10.3390/ma9120974

    Article  CAS  Google Scholar 

  32. Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting - a review. Int Mater Rev 61(5):361–377. https://doi.org/10.1080/09506608.2016.1176289

    Article  CAS  Google Scholar 

  33. Sames WJ (2015) Additive manufacturing of Inconel 718 using electron beam melting: processing, post-processing, and mechanical properties. Texas A&M University

    Google Scholar 

  34. Jiejing L, Dunwen Z (2021) Laser polishing of additive manufactured Ti6Al4V alloy: a review. Opt Eng 60(2):1–16. https://doi.org/10.1117/1.OE.60.2.020901

    Article  Google Scholar 

  35. Jaritngam P, Tangwarodomnukun V, Qi H, Dumkum C (2020) Surface and subsurface characteristics of laser polished Ti6Al4V titanium alloy. Opt Laser Technol 126:106102. https://doi.org/10.1016/j.optlastec.2020.106102

    Article  CAS  Google Scholar 

  36. Liang C, Hu Y, Liu N, Zou X, Wang H, Zhang X, Fu Y, Hu J (2020) Laser polishing of Ti6Al4V fabricated by selective laser melting. Metals-Basel 10(2):191. https://doi.org/10.3390/met10020191

    Article  CAS  Google Scholar 

  37. Temmler A, Willenborg E, Wissenbach K (2011) Design surfaces by laser remelting. Phys Procedia 12(Part 1):419-430. 12:419–430. https://doi.org/10.1016/j.phpro.2011.03.053

  38. Yu Y, Zhang M, Guan Y, Wu P, Chong X, Li Y, Tan Z (2019) The effects of laser remelting on the microstructure and performance of bainitic steel. Metals-Basel 9(8):912. https://doi.org/10.3390/met9080912

    Article  CAS  Google Scholar 

  39. Zhao L, Hu Z, Wang X, Chen X, Huan P, Zhang H (2020) Laser surface remelting of AISI 4140 steel. IOP Conf Ser: Mater Sci Eng 774:012082. https://doi.org/10.1088/1757-899x/774/1/012082

    Article  CAS  Google Scholar 

  40. Sušnik J, Šturm R, Grum J (2012) Influence of laser surface remelting on Al-Si alloy properties. Stroj Vestn-J Mech E 58:614–620. https://doi.org/10.5545/sv-jme.2012.696

    Article  Google Scholar 

  41. Bertelli F, Meza ES, Goulart PR, Cheung N, Riva R, Garcia A (2011) Laser remelting of Al–1.5wt%Fe alloy surfaces: numerical and experimental analyses. Opt Lasers Eng 49(4):490–497. https://doi.org/10.1016/j.optlaseng.2011.01.007

    Article  Google Scholar 

  42. Churchill SW, Usagi R (1972) A general expression for the correlation of rates of transfer and other phenomena. AIChE 18(6):1121–1128. https://doi.org/10.1002/aic.690180606

    Article  CAS  Google Scholar 

  43. Al-Bermani SS (2011) An investigation into microstructure and microstructural control of additive layer manufactured Ti-6Al-4V by electron beam melting. University of Sheffield, EThOS, E-Thesis Online Service

    Google Scholar 

  44. Francis ZR (2017) The effects of laser and electron beam spot size in additive manufacturing processes. Carnegie Mellon University, Pittsburgh, PA

    Google Scholar 

  45. Kik T, Wyględacz B (2019) Measurements and numerical simulations of laser hardening and remelting thermal cycles. J Achiev Mater Manuf Eng 2(96):69–82. https://doi.org/10.5604/01.3001.0013.7937

    Article  Google Scholar 

  46. Jażdżewska M (2020) Effects of CO2 and ND:YAG laser remelting of the Ti6Al4V alloy on the surface quality and residual stresses. Adv Mater Sci 20(1(63)):82-90. https://doi.org/10.2478/adms-2020-0005

  47. Aesh MA (2001) Optimization of weld bead dimensions in GTAW of aluminum–magnesium alloy. Mater Manuf Process 16(5):725–736. https://doi.org/10.1081/AMP-100108632

    Article  CAS  Google Scholar 

  48. Christensen N, Davies Vd L, Gjermundsen K (1965) Distribution of temperatures in arc welding. Br Weld J 12(2):54–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Prisco.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Study Group 212 - The Physics of Welding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prisco, U. Shape of the melt pool produced by a moving Gaussian heat source. Weld World 65, 2105–2118 (2021). https://doi.org/10.1007/s40194-021-01167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01167-3

Keywords

Navigation