Skip to main content

Advertisement

Log in

A review of high energy density beam processes for welding and additive manufacturing applications

  • Review Article
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

High-energy density beam processes for welding, including laser beam welding and electron beam welding, are essential processes in many industries and provide unique characteristics that are not available with other processes used for welding. More recently, these high-energy density beams have been used to great advantage for additive manufacturing. This review of the literature serves to provide an overview of the evolution of the laser and electron beam processes including the fundamental nature of the beam itself and how such a high-energy density beam has been applied for welding. The unique nature of each process regarding weld bead formation and penetration, and metallurgical considerations are covered in detail. In addition, the evolution of monitoring systems for both characterization and control of these beam processes is reviewed. Over 500 references have been cited in this comprehensive review that will allow the reader to both understand the current state-of-the-art and explore in more detail the fundamental concepts and practical applications of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14.
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85
Fig. 86
Fig. 87
Fig. 88
Fig. 89
Fig. 90
Fig. 91
Fig. 92
Fig. 93

Similar content being viewed by others

Abbreviations

AE:

acoustic emission

AM:

additive manufacturing

BPP:

beam parameter product

CAD:

computer-aided design

CCD:

charge-coupled device

CMOS:

complementary metal oxide semiconductors

CNC:

computer numerical control

CW:

continuous wave

DED:

direct energy deposition

DSS:

duplex stainless steel

EBW:

electron beam welding

EMFC:

enhanced modified Faraday cup

FWHM:

full width at half maximum (beam size measurement)

FZ:

fusion zone

HAZ:

heat-affected zone

HED:

high-energy density

HLAW:

hybrid laser-arc welding

ICI:

inline coherent imaging

LASER:

light amplification by stimulated emission of radiation

LBW:

laser beam welding

LED:

light-emitting diode

LENS™:

Laser-engineered net shaping

LPBF:

laser powder bed fusion

MASER:

microwave amplification by stimulated emission of radiation

NDE:

nondestructive evaluation

Nd:YAG:

neodymium doped yttrium aluminum garnet

OCT:

optical coherence tomography

PBF:

powder bed fusion

P-LBW:

pulsed laser beam welding

RPPM:

radiation pressure power meter

TEM:

transverse electromagnetic modes

YAG:

yttrium aluminum garnet

References

  1. Steigerwald KH et al (2007) An International History of Electron Beam Welding. pro beam

  2. McCarthy PT, Reifenberger RG, Fisher TS (2014) Thermionic and photo-excited electron emission for energy-conversion processes. Front. Energy Res. 2(12):1–15

    Google Scholar 

  3. Falconer I (1997) J. J. Thomson and the discovery of the electron. Phys. Educ. 32:226–231

    Article  Google Scholar 

  4. McMullan D (1995) Scanning Electron Microscopy. Scanning 17:175–185

    Article  CAS  Google Scholar 

  5. Crookes W (1878) The Bakerian Lecture - On the Illumination of Lines of Molecular Pressure, and the Trajectory of Molecules

  6. von Pirani M (1907) Production of Homogenous Bodies from Tantalum or Other Metals. US 848,600

  7. Busch H (1926) Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde. Ann. Phys. 81:974

    Article  Google Scholar 

  8. Ruska E, Knoll M (1931) Die magnetische Sammelspule fur schnelle Electronenstrahlen. Z. f. Techn. Phys. 12:389

    Google Scholar 

  9. Marko M, Rose H (2010) The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope. Microsc. Microanal. 16(4):366–374

    Article  CAS  Google Scholar 

  10. Bruche, Scherzer (1934) Geometrische Electronoptik. Julius Springer, Berlin

  11. Breton BC. The early history and development of the scanning electron microscope. [Online]. Available: http://www-g.eng.cam.ac.uk/125/achievements/oatley/history.html. Accessed 07 Sept 2020

  12. Stohr JA (1956) Procédé de soudure des métaux par bombardement électronique. FR 1,141,535 A

  13. Lawrence G (1974) Triode electron gun for electron beam machines

  14. Vaughan WH (1978) Direct Measurement of the electron beam of a scanning electron microscope

  15. Elmer J, Teruya A, O’Brien D (1993) Tomographic imaging of noncircular and irregular electron beam current density distributions. Weld J 72(11):493s–505s

    Google Scholar 

  16. Teruya AT, Elmer JW (1996) Tomographic determination of the power distribution in electron beams. US 5,583,427

  17. Elmer JW, Teruya AT (2001) Enhanced modified Faraday cup for determination of power density distribution of electron beams. US 6,300,755 B1

  18. Stern DP, Peredo M. History of the electron. [Online]. Available: https://pwg.gsfc.nasa.gov/Education/whelect.html. Accessed 17 Aug 2020

  19. Powers DE (2011) Electron Beam Welding in the United States. PTR-Precision Technologies, Enfield

  20. Einstein A (1996) Emission and Absorption of Radiation in Quantum Theory. In: Kox AJ, Klein MJ, Schulmann R (eds) The Collected Papers of Alber Einstein The Berlin Years: Writings, 1914-1917, pp 212–216

  21. Murphy J (2016) From masers to lasers in space — and at the cinema! Photonics media. [Online]. Available: https://www.photonics.com/Articles/From_Masers_to_Lasers_in_Space_and_at_the/a61182. Accessed 19 July 2020

  22. Hecht J (2010) A short history of laser development. Opt. Eng. 49:99–122

    Article  Google Scholar 

  23. Gould G (1968) Apparatus for generating radiation of frequencies higher than those of light. US 3,388,314

  24. Schawlow AL, Townes CH (1960) Masers and maser communications system. US 2,929,922

  25. Schawlow AL, Townes CH (1958) Infrared and Optical Masers. Phys. Rev. 112(6):1940–1949

    Article  CAS  Google Scholar 

  26. Gould G (1977) Optically pumped laser amplifiers. US 4,053,845

  27. Maiman TH (1967) Ruby laser system. US 3,353,115

  28. Hecht J (2005) The Race to Make the Laser. Opt Photon. News. no. July/August, pp. 24–29

  29. Einstein A (1996) On the quantum theory of radiation. In: Kox AJ, Klein MJ, Schulmann R (eds) The collected papers of Alber Einstein the Berlin years: writings, 1914–1917, pp 220–233

  30. Ladenburg R (1927) Untersuchungen uber die anomale Dispersion angeregter Gase

  31. Weber J (1953) Amplification of Microwave Radiation by Substances not in Thermal Equilibrium

  32. Gordon JP, Zeiger HJ, Townes CH (1954) Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys. Rev. 95(1):282–284

    Article  CAS  Google Scholar 

  33. Javan A, Bennett WR, Herriott DR (1961) Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture. Phys. Rev. Lett. 6(3):106–110

    Article  CAS  Google Scholar 

  34. Snitzer E (1961) Optical maser action of Nd+3 in a barium crown glass. Phys. Rev. Lett. 7(12):444–446

    Article  CAS  Google Scholar 

  35. Hall RN, Fenner GE, Kingsley JD, Soltys TJ, Carlson RO (1962) Coherent Light Emission from GaAs Junctions. Phys. Rev. Lett. 9(9):366–369

    Article  CAS  Google Scholar 

  36. Nathan MI, Dumke WP, Burns G, Dill FH, Lasher G (1962) Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1(3):62–64

    Article  CAS  Google Scholar 

  37. Quist TM et al (1962) Semiconductor maser of GaAs. Appl. Phys. Lett. 1(4):91–92

    Article  CAS  Google Scholar 

  38. Newman R (1963) Excitation of the Nd 3+ Fluorescence in CaWO4 by Recombination Radiation in GaAs. J. Appl. Phys. 34(2):437

    Article  CAS  Google Scholar 

  39. Patel CKN (1964) Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2. Phys. Rev. 136(5A):A1187–A1194

    Article  Google Scholar 

  40. Geusic JE, Marcos HM, Van Uitert LG (1964) Laser oscillations in nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Lett. 4(10):182–184

    Article  CAS  Google Scholar 

  41. Koester CJ, Snitzer E (1964) Amplification in a Fiber Laser. Appl. Opt. 3(10):1182–1186

    Article  Google Scholar 

  42. Mears RJ, Reekie L, Poole SB, Payne DN (1985) Neodymium-doped silica single-mode fibre lasers. Electrons Lett. 21(17):738–740

    Article  CAS  Google Scholar 

  43. Giesen A, Hügel H, Voss A, Wittig K, Brauch U, Opower H (1994) Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B Lasers Opt. 58(5):365–372

    Article  Google Scholar 

  44. Giesen A, Speiser J (2011) Thin-Disc Lasers. In: Injeyan H, Goodno DG (eds) High-Power Laser Handbook. McGraw-Hill Companies, Inc., pp 225–266

  45. Gapontsev PV, Samartsev I (1999) Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length. US 5,999,673

  46. Gapontsev V (2004) Ultra High Power Ytterbium Fiber Lasers. In: 1st Pacific International Conference on Applications of Lasers and Optics

  47. Patel CKN (1973) Carbon dioxide laser employing multiple gases including helium. US 3,745,482

  48. Patel CKN (1965) CW High Power N2–CO2 Laser. Appl. Phys. Lett. 7(1):15–17

    Article  CAS  Google Scholar 

  49. Patel CKN, Tien PK, McFee JH (1965) CW High-Power CO2–N2–He Laser. Appl. Phys. Lett 7(11):290

    Article  CAS  Google Scholar 

  50. Tsukamoto S (2013) Developments in CO2 laser welding. In: Katayama S (ed) Handbook of Laser Technologies. Elsevier, pp 17–46

  51. Gottwald T et al (2012) Recent disk laser development at Trumpf. In: Proc. SPIE 8547 - high-power lasers 2012: technology and systems, 85470C

  52. Schad S-S et al (2016) Recent development of disk lasers at TRUMPF. In: Proc. 9726 - Solid State Lasers XXV: Technol. Devices, 972615

  53. Keyes RJ, Quist TM (1964) CaF2:U3+ with GaAs Diode Lasers. Appl. Phys. Lett. 4(3):50–52

    Article  CAS  Google Scholar 

  54. Allen RB, Scalise SJ (1969) Continuous operation of a YAlG: Nd laser by injection luminescent pumping. Appl. Phys. Lett. 14(6):188–190

  55. Welch DF (2000) A Brief History of High-Power Semiconductor Lasers. IEEE J. Sel. Top. Quantum Electron. 6(6):1470–1477

  56. McDougall SD et al (2020) Advances in diode laser bar power and reliability for multi-kW disk laser pump sources. In: Proc. SPIE 11262 - high-power diode laser technol. XVIII, 1126206

  57. Polijanczuk AV, Whitehead DG (1991) Semiconductor Lasers for Microsoldering. In: IEEE Colloquium on Advances in Interconnection Technology

  58. Rossin V, Skidmore J, Zucker E (2011) Semiconductor Laser Diodes. In: Injeyan H, Goodno DG (eds) High-power laser handbook. Inc, McGraw-Hill Companies, pp 101–131

  59. Treusch H, Pandey R (2011) High-power diode laser arrays. In: Injeyan H, Goodno DG (eds) High-power laser handbook. McGraw-Hill Companies, Inc., pp 133–159

  60. Kleine K, Balu P (2017) High-power diode laser sources for materials processing. Proc. 2017 High Power Diode Lasers Syst. Conf:3–4

  61. Clarkson WA, Hanna DC (1996) Two-mirror beam-shaping technique for high-power diode bars. Opt. Lett. 21(6):375–377

    Article  CAS  Google Scholar 

  62. Snitzer E (1961) Proposed Fiber Cavities for Optical Masers. J. Appl. Phys. 32(1):36–39

    Article  Google Scholar 

  63. Keck D, Schlutz P (1973) Method of producing optical waveguide fibers. US 3,711,262

  64. Wyatt R (1989) High Power Broadly Tunable Erbium-Doped Silica Fibre Laser. Electrons Lett. 25(22):1498–1499

    Article  Google Scholar 

  65. Snitzer E, Po H, Hakimi F, Tumminelli R, McCollum BC (1988) Double clad, offset core Nd fiber laser. In: Optical fiber communication conference, PD5:1–3

  66. Po H et al (1989) Double clad high brightness Nd fiber laser pumped by GaAlAs phaser array. In: Optical fiber communication conference, PD7:1–4

  67. IPG photonics successfully tests world’s first 10 kilowatt single-mode production laser. [Online]. Available: https://www.laserfocusworld.com/home/article/16559922/ipg-photonics-successfully-tests-worlds-first-10-kilowatt-singlemode-production-laser. Accessed 23 June 2020

  68. Kawahito Y, Wang H, Katayama S, Sumimori D (2018) Ultra high power (100 kW) fiber laser welding of steel. Opt. Lett. 43(19)

  69. Ribic B, Palmer TA, DebRoy T (2009) Problems and issues in laser-arc hybrid welding. Int. Mater. Rev. 54(4):223–244

    Article  CAS  Google Scholar 

  70. Pinto H, Pyzalla A, Hackl H, Bruckner J (2006) A comparative study of microstructure and residual stresses of CMT-, MIG - And laser-hybrid welds. Mater. Sci. Forum 524–525(614):625–632

    Google Scholar 

  71. Xu G, Pan H, Liu P, Li P, Hu Q, Du B (2018) Finite element analysis of residual stress in hybrid laser-arc welding for butt joint of 12 mm-thick steel plate. Weld. World 62(2):289–300

  72. Gao M, Zeng X, Yan J, Hu Q (2008) Microstructure characteristics of laser-MIG hybrid welded mild steel. Appl Surf Sci. 254(18):5715–5721

    Article  CAS  Google Scholar 

  73. Liu L, Hao X, Song G (2006) A new laser-arc hybrid welding technique based on energy conservation. Mater Trans. 47(6):1611–1614

    Article  CAS  Google Scholar 

  74. Gibson I, Rosen DW, Stucker B (2019) Additive Manufacturing Technologies. Springer

  75. Gandy DW (2018) Qualification of Laser Powder Bed Fusion-AM for Nuclear Pressure Retaining Applications. In: Advanced Manufacturing for Nuclear: Applications, Techniques, Needs, and Challenges and AMM Annual Program Review

  76. Milewski JO (2017) Additive Manufacturing of Metals. Springer

  77. Bourell DL, Marcus HL, Barlow JW, Beaman JJ, Deckard CR (1990) Multiple material systems for selective beam sintering. US 4,944,817

  78. Knapp CM (2018) Directed energy deposition characterization and modeling. PhD Thesis. The University of Texas at Austin

  79. Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J. Orthop. Res. 34(3):369–385

    Article  CAS  Google Scholar 

  80. Bandyopadhyay A, Bose S (2016) Additive manufacturing, 2nd edn. CRC Press

  81. Schade CT, Murphy TF, Walton C (2014) Development of atomized powders for additive manufacturing. In: Adv. Powder Metall. Part. Mater. - 2014, Proc. 2014 World Congr. Powder Metall. Part. Mater. PM 2014, pp 215–225

  82. Megahed M, Mindt HW, N’Dri N, Duan H, Desmaison O (2016) Metal additive-manufacturing process and residual stress modeling. Integr. Mater. Manuf. Innov. 5(1):61–93

    Article  Google Scholar 

  83. Yang L et al (2017) Electron beam technology. In: Additive manufacturing of metals: the technology, materials, design and production, pp 63–79

  84. DebRoy T et al (2018) Additive manufacturing of metallic components – Process, structure and properties. Prog. Mater. Sci. 92:112–224

    Article  CAS  Google Scholar 

  85. Dass A, Moridi A (2019) State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design. Coatings 9(7):1–26

    Article  Google Scholar 

  86. Baker R (1925) Method of making decorative articles. US 1,533,300

  87. Ujiie A (1970) Method of constructing substantially circular cross-section vessel by welding. US 3,665,143

  88. Stecker S (2010) Electron Beam Layer Manufacturing. US 8,546,717 B2

  89. American Welding Society C7 Committee (2013) AWS C7.1M/C7.1:2013 recommended practices for electron beam welding and allied processes. American Welding Society

  90. Atwood C et al (1998) Laser engineered net shaping (LENSTM): a tool for direct fabrication of metal parts. Sandia National Laboratories

  91. Hofmeister W, Griffith M, Ensz M, Smugeresky J (2001) Solidification in Direct Metal Deposition by LENS Processing. Jom 53(9):30–34

    Article  CAS  Google Scholar 

  92. Taheri H, Shoaib MRBM, Koester LW, Bigelow TA, Collins PC, Bond LJ (2017) Powder-based additive manufacturing - a review of types of defects, generation mechanisms, detection, property evaluation and metrology. Int. J. Addit. Subtractive Mater. Manuf. 1(2):172–209

    Google Scholar 

  93. Cordova L, Campos M, Tinga T (2019) Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization. JOM 71(3):1062–1072

    Article  Google Scholar 

  94. Kemerling BL (2018) Development of a weldability testing strategy for laser powder-bed fusion applications. PhD Thesis. The Ohio State University

  95. Luft A, Pflueger S (2011) Body-in-white diode laser brazing. [Online]. Available: https://www.industrial-lasers.com/welding/article/16485690/bodyinwhite-diode-laser-brazing. Accessed 05 July 2020

  96. Mattulat T, Kügler H, Vollertsen F (2020) Investigations on the occurrence of different wetting regimes in laser brazing of zinc-coated steel sheets. Weld. World 64:449–456

  97. Shapiro LA, Shapiro AE (2007) Brazing and Soldering Today. Weld. J. 86(3):74–78

    Google Scholar 

  98. Saida K, Song W, Nishimoto K (2006) Laser brazing of alloy 600 with precious filler metals. Sci. Technol. Weld. Join. 11(6):694–700

    Article  CAS  Google Scholar 

  99. Reimann W, Dobler M, Goede M, Schmidt M, Dilger K (2017) Three-beam laser brazing of zinc-coated steel. Int. J. Adv. Manuf. Technol. 90(1–4):317–328

    Article  Google Scholar 

  100. Reimann W, Pfriem S, Hammer T, Päthe D, Ungers M, Dilger K (2017) Influence of different zinc coatings on laser brazing of galvanized steel. J. Mater. Process. Technol. 239:75–82

    Article  CAS  Google Scholar 

  101. Ogura T, Yokochi T, Netsu S, Saida K (2016) Microstructure and mechanical properties in laser brazing of A5052/AZ31 dissimilar alloys. Weld. World 60(5):1047–1054

    Article  CAS  Google Scholar 

  102. Nelson GE (1965) Electron beam cutting control. US 3,172,989

  103. Sullivan ABJ, Houldcroft PT (1967) Gas-jet laser cutting. Br. Weld. J. 14(8):443–445

  104. Anon (1969) Cutting and Welding with the CO2 Laser. Met. Form 36:258–260

    Google Scholar 

  105. American Welding Society (2007) Laser beam welding, cutting, and associated processes. In: O’Brien GA, Guzman C (eds) Welding handbook volume 3 welding processes, part 2, 9th ed. American Welding Society, Miami, pp 504–530

  106. Steen W, Mazumder J (2010) Laser Material Processing, 4th edn. Springer

  107. American Welding Society C7 Committee (2010) AWS C7.2M:2010 Recommended Practices for Laser Beam Welding, Cutting, and Allied Processes. American Welding Society

  108. O’Neill W, Gabzdyl JT (2000) New developments in laser-assisted oxygen cutting. Opt. Lasers Eng. 34:355–367

    Article  Google Scholar 

  109. Powell J, Tan WK, Maclennan P, Rudd D, Wykes C, Engstrom H (2000) Laser cutting stainless steel with dual focus lenses. J. Laser Appl. 12:224–231

    Article  Google Scholar 

  110. Nielsen SE, Elllis N (2002) Dual-Focus Laser Cutting. Weld. World 46:33–40

    Article  Google Scholar 

  111. Macken J (1992) Dual focus laser welding. US 5,155,323

  112. Andreasch W, Huber R, Mock D (2011) Two concentric fiber diameters in one laser light cable: The 2in1 fiber makes it possible to weld and cut by means of simple optical exchange. Laser Tech. J. 8(1):38–41

    Article  Google Scholar 

  113. Steigerwald KH (1957) Drilling by electrons. US 2,793,281

  114. SPI lasers “A history of laser drilling.” [Online]. Available: https://www.spilasers.com/application-drilling/history-laser-drilling/#:~:text=The link between laser cutting and laser drilling&text=This is unsurprising%2C given that,the laser drilling of diamonds. Accessed 08 Aug 2020

  115. Beck T (2011) Laser drilling in gas turbine blades: Shaping of holes in ceramic and metallic coatings. Laser Tech. J. 8(3):40–43

    Article  Google Scholar 

  116. Ancona A et al (2009) Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Opt. Lett. 34(21):3304

    Article  CAS  Google Scholar 

  117. Ancona A, Rademaker K, Röser F, Limpert J, Nolte S, Tünnermann A (2008) Laser drilling using a high repetition rate and high average power femtosecond fiber CPA system. Opt. Express 16(12):593–596

    Article  Google Scholar 

  118. Grad L, Možina J (1998) Laser pulse shape influence on optically induced dynamic processes. Appl. Surf. Sci. 127–129:999–1004

    Article  Google Scholar 

  119. Low DKY, Li L, Byrd PJ (2001) The influence of temporal pulse train modulation during laser percussion drilling. Opt. Lasers Eng. 35(3):149–164

    Article  Google Scholar 

  120. Locke EV, Hella RA (1974) Metal Processing with a High-Power CO2 Laser. IEEE J. Quantum Electron. QE-10(2):179–185

    Article  Google Scholar 

  121. Zenker R (2004) Structure and properties as a result of electron beam surface treatment. Adv. Eng. Mater. 6(7):581–588

    Article  CAS  Google Scholar 

  122. Ion JC (2005) Surface hardening. In: Laser processing of engineering materials, 221–249

  123. Zenker R, Buchwalder A (2013) Electron beam surface hardening. In: Dossett J, Totten GE (eds) ASM handbook, volume 4A, steel heat treating fundamentals and processes, vol 4A. ASM International, pp 76–77

  124. Wilmoth M (2012) Laser paint stripping technology promising for heavy manufacturers [Online]. Available: https://ewi.org/video-laser-paint-stripping/. Accessed 30 June 2020

  125. Chen GX, Kwee TJ, Tan KP, Choo YS, Hong MH (2010) Laser cleaning of steel for paint removal. Appl. Phys. A Mater. Sci. Process. 101(2):249–253

    Article  CAS  Google Scholar 

  126. Schawlow AL (1971) Method and apparatus for erasing. US 3,553,421

  127. Hill JW, Lee MJ, Spalding IJ (1974) Surface treatments by laser. Opt. Laser Technol. 340:276–278

  128. Lu YF, Takai M, Komuro S, Shiokawa T, Aoyagi Y (1994) Surface cleaning of metals by pulsed-laser irradiation in air. Appl. Phys. A Solids Surfaces. 59:281–288

  129. Brygo F, Dutouquet C, Le Guern F, Oltra R, Semerok A, Weulersse JM (2006) Laser fluence, repetition rate and pulse duration effects on paint ablation. Appl. Surf. Sci. 252(6):2131–2138

    Article  CAS  Google Scholar 

  130. Seo C, Ahn D, Kim D (2015) Removal of oxides from copper surface using femtosecond and nanosecond pulsed lasers. Appl Surf Sci. 349:361–367

    Article  CAS  Google Scholar 

  131. Elmer JW, Hochanadel PW, Lachenberg K, Webber T (2011) Introduction to high energy density electron and laser beam welding. In: Lienert T, Siewert T, Babu S, Acoff V (eds) ASM handbook, volume 6A, welding fundamentals and processes, vol 6A. ASM International, pp 507–513

  132. Assunção EG (2012) Investigation of conduction to keyhole mode transition. PhD Thesis. Cranfield University

  133. Assunção EG, Williams S (2014) Effect of material properties on the laser welding mode limits. J. Laser Appl. 26(1). https://doi.org/10.2351/1.4826153

  134. Webber T, Mazumder J, Lieb T (2011) Laser beam welding. In: Lienert T, Siewert T, Babu S, Acoff V (eds) ASM handbook, volume 6A, welding fundamentals and processes, vol 6A. ASM International, pp 86–89

  135. Bransch HN, Weckman DC, Kerr HW (1994) Effects of Pulse Shaping on Nd:YAG Spot Welds in Austenitic Stainless Steel. Weld. World (June):141–151

  136. Fuerschbach PW, Hinkley DA (1997) Pulsed Nd:YAG laser welding of Cardiac pacemaker batteries with reduced heat input. Weld. J. 76(12):103s–109s

  137. Cho JH, Farson DF, Reiter MJ (2009) Analysis of penetration depth fluctuations in single-mode fibre laser welds. J. Phys. D. Appl. Phys 42(11)

  138. Lee JY, Ko SH, Farson DF, Yoo CD (2002) Mechanism of keyhole formation and stability in stationary laser welding. J. Phys. D. Appl. Phys. 35(13):1570–1576

    Article  CAS  Google Scholar 

  139. Matsunawa A (2002) Science of laser welding - mechanisms of keyhole and pool dynamics. In: ICALEO 2002 - 21st International Congress on Applications of Laser and Electro-Optics, Congress Proceedings, 290

  140. Matsunawa A, Kim J-D, Seto N, Mizutani M, Katayama S (1998) Dynamics of keyhole and molten pool in laser welding. J. Laser Appl. 10(6):247–254

    Article  CAS  Google Scholar 

  141. Dowden J (2009) Laser keyhole welding: the vapour phase. In: Dowden J (ed) The theory of laser materials processing: heat and mass transfer in modern technology. Springer, pp 113–151

  142. Jouvard JM, Girard K, Perret O (2001) Keyhole formation and power deposition in Nd:YAG laser spot welding. J. Phys. D. Appl. Phys. 34(18):2894–2901

    Article  CAS  Google Scholar 

  143. Fujinaga S, Takenaka H, Narikiyo T, Katayama S, Matsunawa A (2000) Direct observation of keyhole behaviour during pulse modulated high-power Nd:YAG laser irradiation. J. Phys. D. Appl. Phys. 33(5):492–497

    Article  CAS  Google Scholar 

  144. Patterson T, Hochanadel JE (2019) Ohio State University Unpublished Data. Columbus, OH

  145. Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J. Phys. D. Appl. Phys. 27(9):1805–1814

    Article  CAS  Google Scholar 

  146. Jiang M, Chen YB, Chen X, Toa W, Debroy T (2020) Enhanced Penetration Depth during Reduced Pressure Keyhole-Mode Laser Welding. Weld. J 99(4)

  147. Fabbro R, Hirano K, Pang S (2016) Analysis of the physical processes occurring during deep penetration laser welding under reduced pressure. J. Laser Appl. 28(2)

  148. Katayama S, Kawahito Y, Mizutani M (2012) Latest Progress in Performance and Understanding of Laser Welding. Phys. Procedia 39:8–16

    Article  Google Scholar 

  149. Shcheglov PY, Gumenyuk AV, Gornushkin IB, Rethmeier M, Petrovskiy VN (2013) Vapor-plasma plume investigation during high-power fiber laser welding. Laser Phys. 23(1)

  150. Zou J, Yang W, Wu S, He Y, Xiao R (2016) Effect of plume on weld penetration during high-power fiber laser welding. J Laser Appl. 28(2)

  151. Knight CJ (1979) Theoretical Modeling of Rapid Surface Vaporization with Back Pressure. AIAA J. 17(5):519–523

    Article  CAS  Google Scholar 

  152. He X, Norris JT, Fuerschbach PW, Debroy T (2006) Liquid metal expulsion during laser spot welding of 304 stainless steel. J. Phys. D. Appl. Phys. 39(3):525–534

    Article  CAS  Google Scholar 

  153. Semak V, Matsunawa A (1997) The role of recoil pressure in energy balance during laser materials processing. J Phys D Appl Phys. 30:2541–2552

    Article  CAS  Google Scholar 

  154. Heiple CR, Roper JR, Stagner RT, Aden RJ (1983) Surface Active Element Effects on the Shape of Gta, Laser, and Electron Beam Welds. Weld. J. 62(3):72–77

    Google Scholar 

  155. Kou S, Limmaneevichitr C, Wei PS (2011) Oscillatory Marangoni flow: a fundamental study by conduction-mode laser spot welding. Weld. J. 90(12):229s–240s

  156. Kou S (2003) Welding Metallurgy, 2nd edn. John Wiley & Sons, Inc.

  157. Heiple CR, Roper JR (1982) Mechanism for Minor Element Effect on Gta Fusion Zone Geometry. Weld. J. 61(4)

  158. Kaplan A (2009) Keyhole welding: the solid and liquid phases. In: Dowden J (ed) The theory of laser materials processing: heat and mass transfer in modern technology. Springer, pp 71–93

  159. Katayama S, Seto N, Do Kim J, Matsunawa A (1997) Formation mechanism and reduction method of porosity in laser welding of stainless steel. Laser Inst. Am. Proc. 83(2)

  160. Miyagi M, Wang J (2020) Keyhole dynamics and morphology visualized by in-situ X-ray imaging in laser melting of austenitic stainless steel. J Mater Process Technol. 282

  161. Tenner F, Berg B, Brock C, Klämpfl F, Schmidt M (2015) Experimental approach for quantification of fluid dynamics in laser metal welding. J. Laser Appl. 27(S2):1–8

    Article  Google Scholar 

  162. Eriksson I, Powell J, Kaplan AFH (2013) Melt behavior on the keyhole front during high speed laser welding. Opt. Lasers Eng. 51(6):735–740

    Article  Google Scholar 

  163. De A, DebRoy T (2004) A smart model to estimate effective thermal conductivity and viscosity in the weld pool. J. Appl. Phys. 95(9):5230–5240

    Article  CAS  Google Scholar 

  164. Rai R, Elmer JW, Palmer TA, Debroy T (2007) Heat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadium. J. Phys. D. Appl. Phys. 40(18):5753–5766

    Article  CAS  Google Scholar 

  165. Rai R, Burgardt P, Milewski JO, Lienert TJ, Debroy T (2009) Heat transfer and fluid flow during electron beam welding of 21Cr-6Ni-9Mn steel and Ti-6Al-4V alloy. J. Phys. D. Appl. Phys. 42(2)

  166. Dowden J, Davis M, Kapadia P (1985) The flow of heat and the motion of the weld pool in penetration welding with a laser. J. Appl. Phys. 57(9):4474–4479

    Article  Google Scholar 

  167. Choo RTC, Szekely J (1994) Possible role of turbulence in GTA weld pool behavior. Weld. J. 73(2):25–31

    Google Scholar 

  168. Nakamura H, Kawahito Y, Nishimoto K, Katayama S (2015) Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium. J. Laser Appl. 27(3):1–10

    Article  Google Scholar 

  169. Mackwood AP, Crafer RC (2005) Thermal modelling of laser welding and related processes: A literature review. Opt. Laser Technol. 37(2):99–115

    Article  Google Scholar 

  170. Svenungsson J, Choquet I, Kaplan AFH (2015) Laser welding process - a review of keyhole welding modelling. Phys. Procedia. In: 15th Nordic laser materials processing conference

  171. Rosenthal D (1941) Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 20(5):220s–234s

    Google Scholar 

  172. Rosenthal D (1946) The Theory of Moving Sources of Heat and Its Application to Metal Treatments. Trans. ASME 68:848–866

    Google Scholar 

  173. Swift-Hook DT, Gick AEF (1973) Penetration Welding with Lasers. Weld. J. (11):492s–499s

  174. Klemens PG (1976) Heat balance and flow conditions for electron beam and laser welding. J. Appl. Phys. 47(5):2165–2174

    Article  Google Scholar 

  175. Mazumder J, Steen WM (1980) Heat transfer model for cw laser material processing. J. Appl. Phys. 51(2):941–947

    Article  Google Scholar 

  176. Miyazaki T, Giedt WH (1982) Heat transfer from an elliptical cylinder moving through an infinite plate applied to electron beam welding. Int. J. Heat Mass Transf. 25(6):807–814

    Article  CAS  Google Scholar 

  177. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall. Trans. B 15B(6):299–305

  178. Sudnik W, Radaj D, Erofeew W (1996) Computerized simulation of laser beam welding, modelling and verification. J. Phys. D. Appl. Phys. 29(11):2811–2817

    Article  CAS  Google Scholar 

  179. Matsunawa A, Semak V (1997) The simulation of front keyhole wall dynamics during laser welding. J. Phys. D. Appl. Phys. 30(5):798–809

    Article  CAS  Google Scholar 

  180. Ki H, Mohanty PS, Mazumder J (2002) Role of recoil pressure, multiple reflections, and free surface evolution during laser keyhole welding. Metall. Mater. Trans. A 33(June):1817–1830

    Article  Google Scholar 

  181. Rai R, Kelly SM, Martukanitz RP, DebRoy T (2006) Experimental and computational investigation of fusion zone geometries during autogenous keyhole mode laser welds. In: ICALEO 2006 - 25th international congress on applications of laser and electro-optics, congress proceedings, 805

  182. Amara EH, Fabbro R (2008) Modelling of gas jet effect on the melt pool movements during deep penetration laser welding. J. Phys. D. Appl. Phys. 41(5)

  183. Hann DB, Iammi J, Folkes J (2011) A simple methodology for predicting laser-weld properties from material and laser parameters. J. Phys. D. Appl. Phys. 44(44)

  184. Trivedi R et al (2003) In situ observations of weld pool solidification using transparent metal-analog systems. J. Appl. Phys. 93(8):4885–4895

    Article  CAS  Google Scholar 

  185. Rappaz M, David SA, Vitek JM, Boatner LA (1989) Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds. Metall. Trans. A 20(6):1125–1138

    Article  Google Scholar 

  186. Rappaz M, David SA, Vitek JM, Boatner LA (1990) Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds. Metall. Trans. A 21(6):1767–1782

    Article  Google Scholar 

  187. David SA, Vitek JM, Babu SS, Boatner LA, Reed RW (1997) Welding of nickel base superalloy single crystals. Sci. Technol. Weld. Join. 2(2):79–88

    Article  CAS  Google Scholar 

  188. Liu H, Nakata K, Zhang JX, Yamamoto N, Liao J (2012) Microstructural evolution of fusion zone in laser beam welds of pure titanium. Mater. Charact. 65:1–7

    Article  CAS  Google Scholar 

  189. Lu W, Shi Y, Lei Y, Li X (2012) Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy. Mater. Des. 34:509–515

    Article  CAS  Google Scholar 

  190. Akman E, Demir A, Canel T, Sinmazçelik T (2009) Laser welding of Ti6Al4V titanium alloys. J. Mater. Process. Technol. 209(8):3705–3713

    Article  CAS  Google Scholar 

  191. Wei HL, Elmer JW, DebRoy T (2017) Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy. Acta Mater. 126:413–425

    Article  CAS  Google Scholar 

  192. Wei HL, Elmer JW, DebRoy T (2017) Crystal growth during keyhole mode laser welding. Acta Mater. 133:10–20

    Article  CAS  Google Scholar 

  193. Baeslack WA, Davis JR, Cross CE (1993) Selection and weldability of conventional titanium alloys. In: Olson DL, Siewert TA, Liu S, Edwards GR (eds) ASM handbook, volume 6: welding, brazing, and soldering, vol 6. ASM International, pp 507–523

  194. Lippold JC, Kotecki DJ (2005) Welding Metallurgy and Weldability of Stainless Steels. John Wiley & Sons, Inc.

  195. Cam G, Erim S, Yeni Ç, Koçak M (1999) Determination of mechanical and fracture properties of laser beam welded steel joints. Weld J. 78(6):193s–201s

    Google Scholar 

  196. Coelho RS, Kostka A, Pinto H, Riekehr S, Koçak M, Pyzalla AR (2008) Microstructure and mechanical properties of magnesium alloy AZ31B laser beam welds. Mater. Sci. Eng. A 485:20–30

    Article  Google Scholar 

  197. Riofrío PG, Capela CA, Ferreira JAM, Ramalho A (2020) Interactions of the process parameters and mechanical properties of laser butt welds in thin high strength low alloy steel plates. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 234(5):665–680

    Google Scholar 

  198. Benyounis KY, Olabi AG, Hashmi MSJ (2005) Effect of laser welding parameters on the heat input and weld-bead profile. J. Mater. Process. Technol. 164–165:978–985

    Article  Google Scholar 

  199. David SA, Vitek JM (1989) Correlation between solidification parameters and weld microstructures. Int. Mater. Rev. 34(1):213–245

    Article  CAS  Google Scholar 

  200. Elmer JW, Eagar TW, Allen SM (1990) Single-phase solidification during rapid-resolidification of stainless steel alloys. In: Proc. of the materials weldability symposium, pp 143–150

  201. Elmer JW, Allen SM, Eagar TW (1989) Microstructural Development during Solidification of Stainless Steel Alloys. Metall. Trans. A 20A(October):2117–2131

    Article  CAS  Google Scholar 

  202. Vitek JM, Dasgupta A, David SA (1983) Microstructural Modification of Austenitic Stainless Steels By Rapid Solidification. Metall Trans A, Phys Metall Mater. Sci. 14 A(9):1833–1841

    Article  Google Scholar 

  203. Schaeffler AL (1949) Constitution Diagram for Stainless Steel Weld Metal. Met. Prog 56(11):680, 680B

    CAS  Google Scholar 

  204. Long CJ, Delong WT (1973) The Ferrite Content of Austenitic Stainless Steel Weld Metal. Weld. J. (7):281s-297s

  205. Kotecki DJ, Siewart TA (1992) WRC-1992 Constitution Diagram for Stainless Steel Weld Metals : A Modification of the WRC-1988 Diagram. Weld. J. (5):171s-178s

  206. Brooks JA, Baskes MI, Greulich FA (1991) Solidification Modeling and Solid-State Transformations in High-Energy Density Stainless Steel Welds. Metall. Trans. A 22A(4):915–926

    Article  CAS  Google Scholar 

  207. David SA, Vitek JM, Hebble TL (1987) Effect of Rapid Solidification on Stainless Steel Weld Metal Microstructures and Its Implications on the Schaeffler Diagram. Weld. J. (8):289s-300s

  208. Lippold JC (1994) Solidification Behavior and Cracking Susceptibility of Pulsed-Laser Welds in Austenitic Stainless Steels. Weld. J. 73(6):129s-139s

    Google Scholar 

  209. Lippold JC (1985) Centerline Cracking in Deep Penetration Electron Beam Welds in Type 304L Stainless Steel. Weld. J. (5):127s–136s

  210. Kujanpaa V, Suutala N, Takalo T, Moisio T (1979) Correlation between solidification cracking and microstructure in austenitic and austenitic-ferritic stainless steel welds. Weld. Res. Int. 9(2):55–75

    CAS  Google Scholar 

  211. Lienert TJ, Lippold JC (2003) Improved weldability diagram for pulsed laser welded austenitic stainless steels. Sci. Technol. Weld. Join. 8(1):1–9

    Article  CAS  Google Scholar 

  212. Hammar O, Svennson U (1979) Influence of steel composition on segregation and microstructure during solifification of austenitic stainless steels. Solidif. Cast. Met. 192:401–410

    Google Scholar 

  213. Hochanadel P, Lienert T, Martinez R, Martinez J, Johnson M (2011) Weld solidification cracking in 304 to 304L stainless steel. In: Lippold JC, Bollinghaus T, Cross CE (eds) Hot cracking phenomena in welds III. Springer, pp 145–160

  214. Kumar P, Sinha AN (2019) Effect of heat input in pulsed Nd:YAG laser welding of titanium alloy (Ti6Al4V) on microstructure and mechanical properties. Weld. World 63(3):673–689

    Article  CAS  Google Scholar 

  215. Saresh N, Pillai MG, Mathew J (2007) Investigations into the effects of electron beam welding on thick Ti-6Al-4V titanium alloy. J. Mater. Process. Technol. 192–193:83–88

    Article  Google Scholar 

  216. Kohyamaa A, Arata Y, Tomie M, Igata N (1984) Electron Beam Welding of Titanium and Ti-6Al-4V Thick Plates. J. Nucl. Mater. 122(1–3):772–776

    Article  Google Scholar 

  217. Casalino G, Mortello M, Campanelli SL (2015) Ytterbium fiber laser welding of Ti6Al4V alloy. J. Manuf. Process. 20:250–256

    Article  Google Scholar 

  218. Karlsson L (2012) Welding duplex stainless steels - A review of current recommendations. Weld. World 56(5–6):65–76

    CAS  Google Scholar 

  219. Verma J, Taiwade RV (2017) Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review. J. Manuf. Process. 25:134–152

    Article  Google Scholar 

  220. Muthupandi V, Bala Srinivasan P, Seshadri SK, Sundaresan S (2003) Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater. Sci. Eng. A 358(1–2):9–16

    Article  Google Scholar 

  221. Sieurin H, Sandström R (2006) Austenite reformation in the heat-affected zone of duplex stainless steel 2205. Mater. Sci. Eng. A 418(1–2):250–256

    Article  Google Scholar 

  222. Bolut M, Kong CY, Blackburn J, Cashell KA, Hobson PR (2016) Yb-fibre laser welding of 6 mm duplex stainless steel 2205. Phys. Procedia 83:417–425

    Article  CAS  Google Scholar 

  223. Kolenič F, Kovac L, Drimal D (2011) Effect of laser welding conditions on austenite/ferrite ratio in duplex stainless steel 2507 welds. Weld. World 55(5–6)

  224. Taban E, Kaluc E (2011) Welding behaviour of duplex and superduplex stainless steels using laser and plasma arc welding processes. Weld. World 55(7–8):48–57

    Article  CAS  Google Scholar 

  225. Collur MM, Paul A, Debroy T (1987) Mechanism of alloying element vaporization during laser welding. Metall. Trans. B 18(4):733–740

    Article  Google Scholar 

  226. Pastor M, Zhao H, Martukanitz RP, Debroy T (1999) Porosity, underfill and magnesium loss during continuous wave Nd:YAG laser welding of thin plates of aluminum alloys 5182 and 5754. Weld. J. 78(6):207s–216s

    Google Scholar 

  227. Khan PAA, Debroy T, David SA (1988) Laser Beam Welding of High-Manganese Stainless Steels - Examination of Alloying Element Loss and Microstructural Changes. Weld. J. (1):2s-7s

  228. Berger J (2018) Effect of preferential vaporization during laser rewelding on the solidification and cracking response of type 304L stainless steel alloys with systematically varied manganese contents. Masters Thesis. The Ohio State University

  229. American Welding Society (2001) Survey of joining, cutting, and allied processes. In: Welding handbook volume 1 welding science and technology, 9th edn. American Welding Society, pp 1–50

  230. Bauer B, Matija B (2011) High Energy Density Welding Processes. In: Welding Engineering and Technology

  231. Benedict GF (1987) Nontraditional Manufacturing Processes, 1st ed. CRC Press

  232. Wȩglowski MS, Błacha S, Phillips A (2016) Electron beam welding - Techniques and trends - Review. Vacuum 130(5):72–92

    Article  Google Scholar 

  233. Eagar TW, Mazzeo AD (2011) Welding Process Fundamentals. In: Lienert T, Siewert T, Babu S, Acof V (eds) ASM Handbook, Volume 6A, Welding Fundamentals and Processes, vol 6A. ASM International, pp 29–34

  234. Schultz H (1994) Electron Beam Welding. Woodhead Publishing

  235. “How do I produce a vacuum for EB welding?,” The Welding Institute. [Online]. Available: https://www.twi-global.com/technical-knowledge/faqs/faq-how-do-i-produce-a-vacuum-for-eb-electron-beam-welding. Accessed 17 Aug 2020

  236. Koleva EG, Mladenov GM (2011) Experience on electron beam welding. In: Nemtanu MR, Brasoveanu M (eds) Practical aspects and applications of electron beam irradiation. pp 95–133

  237. Energy Beam Sciences (2020) Hamiliton Standard and Leybold Heraeus, [Online]. Available: https://ebsciences.com/product-category/electron-beam-welding-filaments/hamiliton-standard-and-lybold-heraeus/. Accessed 17 Aug 2020

  238. Burgardt P (2017) “Personal correspondence on coupling efficiency and HED depth of penetration”

  239. Burgardt P (2017) HED Welding Lecture Series: Electron Beam Sessions. Los Alamos National Laboratory

  240. Iqbal M, Rafiq M, Bhatti SA, Aleem FE (2004) The electron beam gun with thermionic hairpin-like cathode for welding and surface modifications. Vacuum 77(1):19–26

    Article  CAS  Google Scholar 

  241. Pratihar DK, Dey V (2012) Electron Beams for Macro- and Microwelding Applications. In: Jain VK (ed) Micromanufacturing Processes. Taylor & Francis Group, pp 221–240

  242. Wang S, Wu X (2012) Investigation on the microstructure and mechanical properties of Ti-6Al-4V alloy joints with electron beam welding. Mater. Des. 36:663–670

    Article  CAS  Google Scholar 

  243. Dora J, Felba J, Sielanko W (2005) A new generation of power supplies for electron beam welding machines. Vacuum 77(4):463–467

    Article  CAS  Google Scholar 

  244. Sanderson A (2007) Four decades of electron beam development at TWI. Weld. World 51(1–2):37–49

    Article  Google Scholar 

  245. Baechler WG (1987) Cryopumps for research and industry. Vacuum 37(1–2):21–29

    Article  CAS  Google Scholar 

  246. The Welding Institute (2020) The correct electron beam (EB) welding chamber pump vacuum. [Online]. Available: https://www.twi-global.com/technical-knowledge/faqs/faq-why-wont-my-electron-beam-eb-welding-chamber-pump-down-to-the-usual-vacuum. Accessed 17 Aug 2020

  247. Kautz D, Olson D, Burgardt P, Edwards G (1991) A Characterization of Pulsed Electron Beam Welding Parameters. Weld. J. 70(4):100

    Google Scholar 

  248. Qi B, Fan J, Zhang W, Liu F, Wang H (2016) A novel control grid bias power supply for high-frequency pulsed electron beam welding. Vacuum 133:46–53

    Article  CAS  Google Scholar 

  249. Dong C et al (2003) Surface treatment by high current pulsed electron beam. Jinshu Rechuli/Heat Treat. Met. 33(1):620–624

    Google Scholar 

  250. Burgardt P, Pierce SW, Dvornak MJ (2016) Definition of beam diameter for electron beam welding. Los Alamos National Laboratory

  251. Ferrario M, Migliorati M, Palumbo L (2013) Space charge effects. In: Proceedings of the CAS-CERN accelerator school: advanced accelerator physics, pp 331–356

  252. Anderson SG, Rosenzweig JB, LeSage GP, Crane JK (2002) Space-charge effects in high brightness electron beam emittance measurements. Phys. Rev. Spec. Top. - Accel. Beams 5(1):12–23

    Article  Google Scholar 

  253. Hochanadel JE, Patterson T, Lippold JC, Panton B, Johnson MQ, Tung DC (2021) Influence of Focus and Deflection when Comparing Electron Beam Welds to Laser Welds at Varying Parameters in 304 SS. Weld. World

  254. Ho CY (2005) Fusion zone during focused electron-beam welding. J. Mater. Process. Technol. 167(2–3):265–272

    Article  CAS  Google Scholar 

  255. Murphy JL, Mustaleski TM, Watson LC (1988) Multipass, Autogenous Electron Beam Welding. Weld. J. 67(9):187s-195s

    Google Scholar 

  256. Chowdhury S, Yadaiah N, Mujaheed Khan S, Ozah R, Das B, Muralidhar M (2018) A Perspective Review on Experimental Investigation and Numerical Modeling of Electron Beam Welding Process. Mater. Today Proc. 5(2):4811–4817

    Article  CAS  Google Scholar 

  257. Alyackrinskiy ON et al (2018) Experiments with EBW setup with possibility of right angle beam turn. Electrotech. Electron. 53:5–6

    Google Scholar 

  258. Pierce SW, Burgardt P (2016) Comparison of Beam Defocus and Beam Oscillation for Ta-10W EB Welding. Los Alamos National Laboratory

  259. Pierce SW (1993) Thermocapillarity and arc phenomena in stainless steel welds. Masters Thesis. Colorado School of Mines

  260. Pierce SW, Burgardt P, Olson DL (1999) Thermocapillary and arc phenomena in stainless steel welding. Weld. J. (2):45s–52s

  261. Elmer JW, Giedt WH, Eagar TW (1990) The Transition from Shallow to Deep Penetration during Electron Beam Welding Empirical. Weld. J. (5):167s–176s

  262. Tong H, Giedt WH (1970) A Dynamic Interpretation of Electron Beam Welding. Weld. J. 49:259–266

    Google Scholar 

  263. Petrov P, Georgiev C, Petrov G (1998) Experimental investigation of weld pool formation in electron beam welding. Vacuum 51(3):339–343

    Article  CAS  Google Scholar 

  264. Mara GL, Funk ER, McMaster RC, Pence PE (1974) Penetration Mechanisms of Electron Beam Welding and the Spiking Phenomenon. Weld. J. 53(6)

  265. Tong H, Giedt WH (1969) Radiographs of the electron beam welding cavity. Rev. Sci. Instrum. 40(10):1283–1285

    Article  Google Scholar 

  266. Arata V (1986) Fundamental characteristics of high energy density beams in material processing. In: International congress on applications of lasers & electro-optics 73:73–79

  267. Schauer DA, Giedt WH (1978) Prediction of Electron Beam Welding Spiking Tendency. Weld. J. 57(7):189–195

    Google Scholar 

  268. Kubo T, Ajima Y, Nagata T, Saeki T (2012) Relations between electron beam welding parameters and appearances of weld beads on Nb plates. In: 9th meeting of particle accelerator society of Japan, pp 1137–1142

  269. Nunes JAC (1985) A comparison of the physics of gas tungsten arc welding (GTAW), electron beam welding (EBW), and laser beam welding (LBW). National Aeronautics and Space Administration

  270. Rai R (2008) Modeling of heat transfer and fluid flow in keyhole mode welding. PhD Dissertation. Pennsylvania State University

  271. Burgardt P, Heiple C (1992) Weld penetration sensitivity to welding variables when near full joint penetration. Weld. J. 71(9):341

    CAS  Google Scholar 

  272. Giedt WH, Tallerico LN (1988) Prediction of electron beam depth of penetration. Weld. J. 67(12):299s-306s

    Google Scholar 

  273. Yost TE (2015) Effects of select parameters on electron beam welding of AA6061-T6 alloy. Masters Thesis. Colorado School of Mines

  274. Thomas G, Ramachandra V, Nagarajan KV, Pant B, Sarkar BK, Vasudevan R (1989) Electron Beam Welding Studies of 25-mm-Thick Ti-6Al-4V Sections. Weld. J. 68(8):336–341

    Google Scholar 

  275. Grecu L, Demian G, Demian M, Grecu V (2009) The Influence of Welding Parameters on Temperature Distribution in Case of EBW. In: Katalinic B (ed) DAAAM International Scientific Book. DAAAM International, Vienna, Austria, pp 35–44

  276. Dragunov VK, Terentyev EV, Sliva AP, Goncharov AL, Zhgut DA (2019) Analytical methods of electron beam power evaluation for electron-beam welding with deep penetration. IOP Conf. Ser. Mater. Sci. Eng. 681(1)

  277. Sarafan S, Wanjara P, Champliaud H, Mathieu L, Lanteigne J (2013) Characteristics of electron beam welded CA6NM. In: Materials Science and Technology Conference and Exhibition 2013, MS and T 2013, pp 720–732

  278. Patel V, Sali A, Hyder J, Corliss M, Hyder D, Hung W (2020) Electron Beam Welding of Inconel 718. Procedia Manuf. 48:428–435

    Article  Google Scholar 

  279. Electron beam welding, The Open University, 2018. [Online]. Available: https://www.open.edu/openlearn/science-maths-technology/engineering-technology/manupedia/electron-beam-welding. Accessed 17 Aug 2020

  280. Weidner CW, Shuler LE (1973) Effect of Process Variables on Partial Penetration Electron Beam Welding. Weld. J. (3):115s-119s

  281. Dragunov VK, Terentev EV, Sliva AP, Goncharov AL, Marchenkov AY (2017) Determination of welding speed in electron beam welding of thick components with continuous penetration. Weld. Int. 31(4):307–311

    Article  Google Scholar 

  282. Trushnikov DN, Belenki’y VY, Mladenov GM, Portnov NS (2012) Secondary-Emission signal for weld formation monitoring and control in eletron beam welding (EBW). Materwiss. Werksttech. 43(10):892–897

    Article  CAS  Google Scholar 

  283. Schubert G (2009) Electron beam welding - Process, applications and equipment. Weld. World 53:283–288

    CAS  Google Scholar 

  284. Burgardt P, Hochanadel PW, Duffield AN, Kautz DO (2008) Electron beam welding of 21-6-9 stainless steel using both circle deflection and defocus settings. Los Alamos National Laboratory

  285. Trushnikov DN, Koleva EG, Mladenov GM, Belenkiy VY (2013) Effect of beam deflection oscillations on the weld geometry. J. Mater. Process. Technol. 213(9):1623–1634

    Article  Google Scholar 

  286. Varushkin S, Trushnikov D, Permyakov G (2017) Optimal Mode of Beam Oscillation for Melt-Through Mode in Electron Beam Welding and Its Influence on Penetration Control System. Procedia Eng. 206:1360–1364

    Article  Google Scholar 

  287. Vadolia GR, Premjit Singh K (2017) Electron Beam Welding: study of process capability and limitations towards development of nuclear components. Journal of Physics: Conference Series 823(1)

  288. Mohandas T, Banerjee D, Kutumba Rao VV (1999) Fusion Zone Microstructure and Porosity in Electron Beam Welds of an α + β Titanium Alloy. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 30A:789–798

    Article  CAS  Google Scholar 

  289. Kaplan AFH, Powell J (2011) Spatter in laser welding. J Laser Appl. 23(3):032005

    Article  Google Scholar 

  290. Brooks JA (1975) Weldability of High N, High Mn Austenitic Stainless Steel. Weld. J. 54(6):189s-195s

    Google Scholar 

  291. Baufeld B, Priest J, Dutilleul T (2019) EBW of nuclear pressure vessel steels. Electrotech. Electron. 53(12):5–6

  292. Iwashita Y et al (2013) Update on study of welding porosity in Nb EBW. In: Proceedings of SRF2013, pp 567–569

  293. Kar J, Chakrabarti D, Roy SK, Roy GG (2019) Beam oscillation, porosity formation and fatigue properties of electron beam welded Ti-6Al-4V alloy. J. Mater. Process. Technol. 266:165–172

    Article  CAS  Google Scholar 

  294. Sliva AP, Dragunov VK, Terentyev EV, Goncharov AL (2018) EBW of aluminium alloys with application of electron beam oscillation. J. Phys. Conf. Ser. 1089:012005

  295. Dinda SK, Kar J, Jana S, Gopal Roy G, Srirangam P (2019) Effect of beam oscillation on porosity and intermetallics of electron beam welded DP600-steel to Al 5754-alloy. J. Mater. Process. Technol. 265(10):191–200

    Article  CAS  Google Scholar 

  296. Bandi B, Dinda SK, Kar J, Roy GG, Srirangam P (2018) Effect of weld parameters on porosity formation in electron beam welded Zircaloy-4 joints: X-ray tomography study. Vacuum 158(7):172–179

    Article  CAS  Google Scholar 

  297. Hershcovitch A (2005) Non-vacuum electron beam welding through a plasma window. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 241(1–4):854–857

    Article  CAS  Google Scholar 

  298. Bach FW, Szelagowski A, Versemann R, Zelt M (2003) Non vacuum electron beam welding of light sheet metals and steel sheets. Weld. World 47(3–4):4–10

    Article  CAS  Google Scholar 

  299. Hadley P. Emmision current, TU Graz. [Online]. Available: http://lamp.tu-graz.ac.at/~hadley/sem/faraday/faraday.php. Accessed 07 Aug 2020

  300. Burgardt P (2007) Vacuum effects in electron beam welding, Los Alamos National Laboratory

  301. Schwarz H (1962) Power Density of Optimally Focused Space-Charge-Limited Electron Beams. J Appl Phys. 33(12):3464–3470

    Article  Google Scholar 

  302. America IAM (2016) Laser Welding Fundamentals. Amada Miyachi America, INC., Monrovia, California, USA

  303. Stellwag WL (2012) Fiber laser wedling of 304 stainless steel and the effects of various parameters on materials coupling and back-reflection. Masters Thesis. The Ohio State University

  304. Gahan BC, Shiner B (2004) New High-Power Fiber Laser Enables Cutting-Edge Research. Laser Technol.:29–31

  305. Koechner W (2007) Solid-state laser engineering. In: Rhodes WT (ed) 6th edn. Springer

  306. Kruse J (2013) Introduction: fundamentals of laser welding. In: Katayama S (ed) Handbook of Laser Welding Technologies. Woodhead Publishing, pp 3–16

  307. Bidin N, Kee LP (2010) Comparison of ND : YAG laser beam quality between free running and Q-switched modes. J Fiz Malaysia 31(1–4):15–20

    CAS  Google Scholar 

  308. IPG Photonics Inc. (2020) Diode laser systems [Online]. Available: https://www.ipgphotonics.com/en/products/lasers/diode-laser-systems. Accessed 19 May 2020

  309. Trumpf (2020) Diode lasers [Online]. Available: https://www.trumpf.com/en_US/products/laser/diode-lasers/. Accessed 19 May 2020

  310. Sharma RS, Molian P (2011) Weldability of advanced high strength steels using an Yb: YAG disk laser. J Mater Process Technol. 211(11):1888–1897

    Article  CAS  Google Scholar 

  311. Löffler K (2013) Developments in disk laser welding. Handb. Laser Weld. Technol.:73–102

  312. Zhang LJ, Zhang JX, Gumenyuk A, Rethmeier M, Na SJ (2014) Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser. J. Mater. Process. Technol. 214(8):1710–1720

    Article  CAS  Google Scholar 

  313. Smrz M, Divoky M (2019) Diode pumped high power lasers. In: Divliansky I (ed) Advances in High-Power Fiber and Diode Laser Engineering. The Institution of Engineering and Technology, London, pp 156–197

  314. Zervas MN, Codemard CA (2014) High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 20(5)

  315. IPG Photonics Inc. (2020) YLS, 1-120+ kW [Online]. Available: https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers/1-micron/yls-1-120-kw. Accessed 14 Nov 2020

  316. Richter K, Behr W, Reisgen U (2007) Low Heat Welding of Titanium Materials with a Pulsed Nd:YAG Laser. Materwiss. Werksttech. 38(1):51–56

    Article  CAS  Google Scholar 

  317. Zediker MS, Fritz RD, Finuf MJ, Pelaprat JM (2019) Stable keyhole welding of 1 mm thick copper with a 600 W blue laser system. J Laser Appl. 31(2)

  318. Deile J, Villarreal FJ (2011) Carbon Dioxide Lasers. In: Injeyan H, Goodno GD (eds) High-Power LaserPower Laser. Inc, McGraw-Hill Companies, pp 3–16

  319. Mazumder J, Webber T (2011) Laser Beam Weld Design , Codes , and Quality Assessment. In: Lienert T, Siewert TA, Babu S, Acoff V (eds) ASM Handbook, Volume 6A, Welding Fundamentals and Processes, vol 6A. ASM International

  320. Rath W (2007) CO2 Lasers : Modern Workhorses in the World of Industrial Manufacturing. Laser Tech. J. 3(6):34–39

    Article  Google Scholar 

  321. IPG Photonics Inc. YLS-AMB adjustable mode beam lasers [Online]. Available: https://www.ipgphotonics.com/en/217/FileAttachment/AMB+Welding+Benefits.pdf. Accessed 25 Aug 2020

  322. Goodno GD, Hagop (2011) Introduction to High-Power Solid-State Lasers. In: Injeyan H, Goodno GD (eds) High-Power Laser Handbook

  323. Kanskar M (2019) Diode laser: fundamentals and improving brightness. In: Divliansky I (ed) Advances in high-power fiber and diode laser engineering, pp 1–36

  324. Laserline GmbH (2020) LDF series - mobile high power diode laser [Online]. Available: https://www.laserline.com/en-int/ldfseries/. Accessed 25 Aug 2020

  325. Smrž M et al (2017) Advances in high-power, Ultrashort pulse DPSSL technologies at HiLASE. Appl. Sci. 7(10)

  326. Koechner W (2006) Mode locking. In: Rhodes WT (ed) Solid-state laser engineering, 6th edn. Springer, pp 534–586

  327. Dong L, Fermann ME (2011) Introduction to Optical Fiber Lasers. In: Injeyan H, Goodno GD (eds) High-Power Laser Handbook. McGraw-Hill Companies, Inc., pp 413–462

  328. Blecher J, Palmer TA, Kelly SM, Martukanitz RP (2012) Identifying performance differences in transmissive and reflective laser optics using beam diagnostic tools. Weld. J. 91(7)

  329. Reitemeyer D, Seefeld T, Vollertsen F (2010) Online focus shift measurement in high power fiber laser welding. Phys Procedia 5:455–463

    Article  Google Scholar 

  330. Klein CA (2007) Materials for high-energy laser windows: how thermal lensing and thermal stresses control the performance. Opt. Mater. Struct. Technol. III

  331. Miyamoto I, Nanba H, Maruo H (1990) Analysis of thermally induced optical distortion in lens during focusing high-power CO2 laser beam. In: CO2 Lasers and Applications II, pp 112–121

  332. Fuerschbach PW (1996) Measurement and prediction of energy transfer efficiency in laser beam welding. Weld. J. 75(1):24s–34s

  333. Ream SL (2004) Laser welding efficiency and cost: CO2, YAG, fiber, and disc. In: Proceedings of the 23rd international congress on applications of lasers and electro-optics

  334. Webber TC (1996) Laser welding melt efficiency comparison: cw and Q-switched Nd:YAG. Lasers as Tools Manuf. Durable Goods Microelectron 2703:162–169

  335. Xie J, Kar A, Rothenflue JA, Latham WP (1997) Temperature-dependent absorptivity and cutting capability of CO2, Nd:YAG and chemical oxygen–iodine lasers. J. Laser Appl. 9(2):77–85

    Article  CAS  Google Scholar 

  336. Quintino L, Costa A, Miranda R, Yapp D, Kumar V, Kong CJ (2007) Welding with high power fiber lasers - A preliminary study. Mater. Des. 28(4):1231–1237

    Article  CAS  Google Scholar 

  337. Mazumder J (1982) Laser Welding: State of the Art Review. JOM J. Miner. Met. Mater. Soc. 34(7):16–24

    Article  Google Scholar 

  338. Cai C, Peng GC, Li LQ, Chen YB, Qiao L (2014) Comparative study on laser welding characteristics of aluminium alloy under atmospheric and subatmospheric pressures. Sci. Technol. Weld. Join. 19(7):547–553

    Article  CAS  Google Scholar 

  339. Schneider M, Berthe L, Fabbro R, Muller M (2008) Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime. J Phys D Appl Phys. 41(15)

  340. Kaplan AFH (2012) Fresnel absorption of 1 μm- and 10 μm-laser beams at the keyhole wall during laser beam welding: Comparison between smooth and wavy surfaces. Appl. Surf. Sci. 258(8):3354–3363

    Article  CAS  Google Scholar 

  341. Sánchez-Amaya JM, Delgado T, De Damborenea JJ, Lopez V, Botana FJ (2009) Laser welding of AA 5083 samples by high power diode laser. Sci. Technol. Weld. Join 14(1):78–86

    Article  Google Scholar 

  342. Hess A, Schuster R, Heider A, Weber R, Graf T (2011) Continuous wave laser welding of copper with combined beams at wavelengths of 1030 nm and of 515 nm. Phys. Procedia 12:88–94

    Article  CAS  Google Scholar 

  343. Bergmann JP, Bielenin M, Feustel T (2015) Aluminum welding by combining a diode laser with a pulsed Nd:YAG laser. Weld. World 59(2):307–315

    Article  CAS  Google Scholar 

  344. Volpp J, Vollertsen F (2015) Modeling keyhole oscillations during laser deep penetration welding at different spatial laser intensity distributions. Prod. Eng. 9(2):167–178

    Article  Google Scholar 

  345. Kaplan AFH (2012) Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence. Appl Phys Lett. 101(15)

  346. Gao M, Chen C, Hu M, Guo L, Wang Z, Zeng X (2015) Characteristics of plasma plume in fiber laser welding of aluminum alloy. Appl. Surf. Sci. 326:181–186

    Article  CAS  Google Scholar 

  347. Scholz T, Dickmann K, Ostendorf A, Uphoff H, Michalewicz M (2015) Effect of process parameters on the formation of laser-induced nanoparticles during material processing with continuous solid-state lasers. J Laser Appl. 27(3):032001

    Article  Google Scholar 

  348. Walsh CA (2002) LASER WELDING - Literature Review. England, Cambridge

  349. Chiang S, Albright CE (1992) CO2 laser beam - Materials interactions in the welding of mild steel part 2: effects of plume suppression on heat transfer efficiencies in argon - shielded laser beam welding. Laser Inst Am 75:491–522

    Google Scholar 

  350. Rockstroh TJ, Mazumder J (1987) Spectroscopic studies of plasma during cw laser materials interaction. J Appl Phys. 61(3):917–923

    Article  CAS  Google Scholar 

  351. Kawahito Y, Matsumoto N, Mizutani M, Katayama S (2008) Characterisation of plasma induced during high power fibre laser welding of stainless steel. Sci Technol Weld Join. 13(8):744–748

    Article  CAS  Google Scholar 

  352. Kawahito Y, Kinoshita K, Matsumoto N, Mizutani M, Katayama S (2008) Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser. Sci Technol Weld. Join. 13(8):749–753

    Article  CAS  Google Scholar 

  353. Cai Y, Heng H, Li F, Wang M (2018) The influences of welding parameters on the metal vapor plume in fiber laser welding based on 3D reconstruction. Opt Laser Technol. 107:1–7

    Article  CAS  Google Scholar 

  354. Pang S, Hirano K, Fabbro R, Jiang T (2015) Explanation of penetration depth variation during laser welding under variable ambient pressure. J Laser Appl. 27(2)

  355. Shcheglov PY, Uspenskiy SA, Gumenyuk AV, Petrovskiy VN, Rethmeier M, Yermachenko VM (2011) Plume attenuation of laser radiation during high power fiber laser welding. Laser Phys. Lett. 8(6):475–480

    Article  CAS  Google Scholar 

  356. Reisgen U, Olschok S, Jakobs S, Turner C (2016) Laser beam welding under vacuum of high grade materials. Weld. World 60(3):403–413

    Article  CAS  Google Scholar 

  357. Greses J, Hilton PA, Barlow CY, Steen WM (2004) Plume attenuation under high power Nd:yttritium–aluminum–garnet laser welding. J Laser Appl. 16(1):9–15

  358. Shcheglov P (2012) Study of vapour-plasma plume during high power fiber laser beam influence on metals. PhD Thesis. BAM Bundesanstalt für Materialforschung und-prüfung

  359. Schneider A, Gumenyuk A, Lammers M, Malletschek A, Rethmeier M (2014) Laser beam welding of thick titanium sheets in the field of marine technology. Phys. Procedia 56:582–590

    Article  Google Scholar 

  360. Baardsen EL, Schmatz DJ, Bisaro RE (1973) High Speed Welding of Sheet Steel with a CO2 Laser. Weld J. (4):226–228

  361. Ai Y et al (2017) The prediction of the whole weld in fiber laser keyhole welding based on numerical simulation. Appl Therm Eng. 113:980–993

    Article  CAS  Google Scholar 

  362. Fuerschbach PW, Norris JT, He X, Debroy T (2003) Understanding metal vaporization from laser welding. Sandia National Laboratories

  363. Suder WJ, Williams SW (2012) Investigation of the effects of basic laser material interaction parameters in laser welding. J Laser Appl. 24(3):1–10

    Article  Google Scholar 

  364. Suder W, Williams S (2010) Parameter selection in laser welding using the power factor concept. 29th Int. Congr. Appl. Lasers Electro-Optics, ICALEO 2010 - Congr. Proc. 103

  365. Ayoola WA, Suder WJ, Williams SW (2017) Parameters controlling weld bead profile in conduction laser welding. J. Mater. Process. Technol. 249:522–530

    Article  Google Scholar 

  366. Suder WJ, Williams S (2014) Power factor model for selection of welding parameters in CW laser welding. Opt Laser Technol. 56:223–229

    Article  CAS  Google Scholar 

  367. Börner C, Krüssel T, Dilger K (2013) Process characteristics of laser beam welding at reduced ambient pressure. In: High-power laser materials processing: lasers, beam delivery, diagnostics, and applications II, 86030M

  368. Katayama S, Kobayashi Y, Seto N, Mizutani M, Matsunawa A (2001) Effect of vacuum on penetration and defects in laser welding. J Laser Appl. 13(5):187–192

    Article  CAS  Google Scholar 

  369. Jiang M, Chen X, Chen Y, Tao W (2019) Increasing keyhole stability of fiber laser welding under reduced ambient pressure. J Mater Process Technol. 268:213–222

    Article  Google Scholar 

  370. Olsen FO, Alting L (1995) Pulsed Laser Materials Processing, ND-YAG versus CO2 Lasers. CIRP Ann. - Manuf. Technol. 44(1):141–145

    Article  Google Scholar 

  371. Torkamany MJ, Hamedi MJ, Malek F, Sabbaghzadeh J (2006) The effect of process parameters on keyhole welding with a 400 W Nd:YAG pulsed laser. J Phys D Appl Phys. 39(21):4563–4567

    Article  CAS  Google Scholar 

  372. Assunção E, Williams S (2013) Comparison of continuous wave and pulsed wave laser welding effects. Opt Lasers Eng. 51(6):674–680

    Article  Google Scholar 

  373. Fuerschbach PW, Eisler GR (2002) Effect of laser spot weld energy and duration on melting and absorption. Sci Technol Weld Join. 7(4):241–246

    Article  CAS  Google Scholar 

  374. Grünenwald S, Unt A, Salminen A (2018) Investigation of the influence of welding parameters on the weld geometry when welding structural steel with oscillated high-power laser beam. Procedia CIRP 74:461–465

    Article  Google Scholar 

  375. Köhler M, Tóth T, Kreybohm A, Hensel J, Dilger K (2020) Effects of reduced ambient pressure and beam oscillation on gap bridging ability during solid-state laser beam welding. J Manuf Mater Process. 4(40):1–13

  376. Müller A, Goecke SF, Rethmeier M (2018) Laser beam oscillation welding for automotive applications. Weld. World 62(5):1039–1047

    Article  Google Scholar 

  377. Fetzer F, Sommer M, Weber R, Weberpals JP, Graf T (2018) Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi. Opt. Lasers Eng. 108:68–77

    Article  Google Scholar 

  378. Wang L, Gao M, Zhang C, Zeng X (2016) Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater Des. 108:707–717

    Article  CAS  Google Scholar 

  379. Mrňa L, Horník P, Jedlička P, Pavelka J (2017) Study of laser wobbling welding process through the radiation of plasma plume. In: Lasers in Manufacturing Conference 2017

  380. Hann DB, Iammi J, Folkes J (2010) Keyholing or Conduction – Prediction of Laser Penetration Depth. Proc. 36th Int. MATADOR Conf 22:309–317

    Google Scholar 

  381. Courtois M, Carin M, Le Masson P, Gaied S, Balabane M (2013) A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding. J Phys D Appl Phys. 46(50)

  382. Coroado J et al (2017) Fundamental understanding of the interaction of continuous wave laser with aluminium. Int J Adv Manuf Technol 93:3165–3174

    Article  Google Scholar 

  383. Norris JT, Robino CV, Hirschfeld DA, Perricone MJ (2011) Effects of laser parameters on porosity formation: Investigating millimeter scale continuous wave Nd:YAG laser welds. Weld J. 90(10):198s–204s

    Google Scholar 

  384. Blecher JJ, Palmer TA, Debroy T (2016) Porosity in thick section alloy 690 welds - Experiments, modeling, mechanism, and remedy. Weld J. 95(1):17s-26s

    Google Scholar 

  385. Matsunawa A, Do Kim J, Katayama S (1997) Porosity formation in laser welding - mechanisms and suppression methods. Laser Inst. Am. Proc. 83(2)

  386. Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1–4:87–98

    Google Scholar 

  387. Tammas-Williams S, Zhao H, Léonard F, Derguti F, Todd I, Prangnell PB (2015) XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting. Mater. Charact. 102:47–61

    Article  CAS  Google Scholar 

  388. Ion JC (2000) Laser beam welding of wrought aluminium alloys. Sci. Technol. Weld. Join. 5(5):265–276

    Article  CAS  Google Scholar 

  389. Zhang J, Weckman DC, Zhou Y (2008) Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd:YAG laser welds. Weld. J. (Miami, Fla) 87(1):18s–30s

    Google Scholar 

  390. Katayama S, Yohei A, Mizutani M, Kawahito Y (2011) Development of deep penetration welding technology with high brightness laser under vacuum. Phys Procedia 12:75–80

    Article  CAS  Google Scholar 

  391. Luo Y, Tang X, Lu F, Chen Q, Cui H (2015) Effect of subatmospheric pressure on plasma plume in fiber laser welding. J Mater Process Technol. 215(1):219–224

    Article  Google Scholar 

  392. Kawahito Y, Mizutani M, Katayama S (2007) Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry. J Phys D Appl Phys. 40(19):5854–5859

    Article  CAS  Google Scholar 

  393. Albright CE, Chiang S (1988) High-Speed Laser Welding Discontinuities. J Laser Appl. 1(1):18–24

    Article  Google Scholar 

  394. Arata Y, Abe N, Oda T (1985) Fundamental Phenomena in High Power CO2 Laser (Report II) : Vacuum Laser Welding. Trans JWRI

  395. Börner C, Dilger K, Rominger V, Harrer T, Krüssel T, Löwer T (2011) Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser. 30th Int. Congr. Appl. Lasers Electro-Optics, ICALEO 2011 (614):621–629

  396. Jiang M, Tao W, Chen Y (2017) Laser welding under vacuum: a review. Appl. Sci. 7(909):1–17

  397. Elmer JW, Vaja J, Carlton HD (2016) The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercially pure titanium and nickel. Weld. J. 95(11):419s-430s

    Google Scholar 

  398. Jiang M, Tao W, Wang S, Li L, Chen Y (2017) Effect of ambient pressure on interaction between laser radiation and plasma plume in fiber laser welding. Vacuum 138:70–79

    Article  CAS  Google Scholar 

  399. Reisgen U, Olschok S, Holtum N, Jakobs S (2017) Laser beam welding in mobile vacuum. In: Lasers in Manufacturing Conference 2017

  400. Schneider A, Gumenyuk A, Rethmeier M (2015) Mobile Vacuum in Pocket Format. Laser Tech. J. 12(4):43–46

    Article  Google Scholar 

  401. Chiang S, Albright C (1993) The limit of joint penetration in high energy density beam welding. Weld J. 72(3):118s–121s

    Google Scholar 

  402. Duocastella M, Arnold CB (2012) Bessel and annular beams for materials processing. Laser Photonics Rev. 6(5):607–621

    Article  Google Scholar 

  403. Lachenberg K, Hochanadel P, Elmer JW (2011) Design considerations for electron beam welding. In: Lienert T, Siewert T, Babu S, Acoff V (eds) ASM handbook, volume 6A, welding fundamentals and processes, vol 6A. ASM International, pp 532–539

  404. Pierce SW, Burgardt P (2014) Evaluation of two devices for electron beam profiling. Los Alamos National Laboratory

  405. International Standards Organization (2005) ISO 11146-1:2005 Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios – Part1: Stigmatic and simple astigmatic beams. International Standards Organization

  406. Koglbauer A (2018) More Than Beam Profiling. Laser Tech. J. 15(3):40–44

    Article  Google Scholar 

  407. Palmer TA, Hochanadel PW, Lachenburg K (2011) Quality control of electron beams and welds. In: Lienert T, Siewert T, Babu S, Acoff V (eds) ASM handbook, volume 6A, welding fundamentals and processes, vol 6A. ASM International, pp 548–555

  408. Palmer TA, Elmer JW (2008) Improving process control in electron beam welding using the enhanced modified faraday cup. J. Manuf. Sci .Eng. Trans. ASME 130(4):0410081–04100815

  409. Kaur A, Ribton C, Balachandaran W (2015) Electron beam characterisation methods and devices for welding equipment. J Mater Process Technol. 221:225–232

    Article  CAS  Google Scholar 

  410. Dilthey U, Goumeniouk A, Nazarenko OK, Akopjantz KS (2001) Mathematical simulation of the influence of ion-compensation, self-magnetic field and scattering on an electron beam during welding. Vacuum 62:87–96

  411. Sanderson A, Adams MJ (1970) Electron Beam Welding US 3,534,387

  412. Hicken G, Giedt W, Bentley A (1991) Correlation of joint penetration with electron beam current distribution. Weld J. 70(3):69

    Google Scholar 

  413. Prudnikov IA, Toropov AS, Chickikalov YF, Khokhryakov IV (1974) Device for Determination of Charged Particle Beam Profile and Position. Nucl. Instruments Methods 14:101–104

    Article  Google Scholar 

  414. Ragheb M, Zakhary S (2000) Study of the electron beam diagnostics and beam waist. Radiat Phys Chem. 58(1):1–8

  415. Dilthey U, Goumeniouk A, Böhm S, Welters T (2001) Electron beam diagnostics: a new release of the diabeam system. Vacuum 62(2–3):77–85

    Article  CAS  Google Scholar 

  416. W. H. Giedt and R. Campiotti (1996) Method of automatic measurement and focus of an electron beam apparatus therefor. US 5,843,036

  417. Krishnan S, Bindra KS, Oak SM (2008) A sensitive and high dynamic range cw laser power meter. Rev Sci Instrum. 79(12)

  418. Slutzki M (2004) How is laser Power/Energy measurement affected by incidence angle? Appl, Note

  419. Holloway CL et al (2018) Measurement of radio-frequency radiation pressure: the quest for a new SI traceable power measurement. In: 2018 international symposium on electromagnetic compatibility (EMC Europe), pp 386–390

  420. Williams PA, Rogers K, Hadler JA, Lee R, and Lehman JH (2019) Using photon momentum to measure high CW laser power and pulse energy. In: Proc. SPIE 11033 - high-power, high-energy, and high intensity laser tech IV, V110330A

  421. Artusio-Glimpse AB, Ryger I, Azarova NA, Williams PA, Hadler JA, Lehman JH (2020) Miniature force sensor for absolute laser power measurements via radiation pressure at hundreds of watts. Opt Express 28(9):13310–13322

    Article  CAS  Google Scholar 

  422. Williams PA et al (2019) Radiation-Pressure-Enabled Traceable Laser Sources at CW Powers up to 50 kW. IEEE Trans. Instrum. Meas. 68(6):1833–1839

    Article  CAS  Google Scholar 

  423. Williams P, Simonds B, Sowards J, Hadler J (2016) Measuring laser power as a force: a new paradigm to accurately monitor optical power during laser-based machining operations. In: Proc. SPIE 9741 - high-power laser mater. Process. Lasers, Beam Deliv. Diagnostics, Appl. V97410L

  424. Fuerschbach PW, Norris JT, Dykhuizen RC, Mahoney AR (2004) Development and evaluation of an in-situ beam measurement for spot welding lasers. Weld J 83(5):154s–159s

  425. Wang ZY, Liu JT, Hirak DM, Weckman DC, Kerr HW (1993) Determining the Spot Size and Gaussian Distribution Coefficient of Pulsed Laser Beams Using KAPTON Films. J Laser Appl. 5(1):5–12

    Article  CAS  Google Scholar 

  426. Kramer R, Hänsel K, Schwede H, Brandl V, Klos M (2002) Logarithmic CMOS camera microscope for beam diagnostics - profiling of high power Q - switch lasers. In: ICALEO 2002 - 21st international congress on applications of laser and electro-optics, congress proceedings, V51778

  427. PRIMES GmbH (2018) PRIMES FocusMonitor FM+. Operating manual

  428. Green LI, Herrit GL, Reedy HE (2003) New method for in-line beam profiling high-power CO2 lasers with an IR camera-based system. In: Proc. SPIE 4969 - laser resonators and beam control VI

  429. Lim GC, Steen WM (1984) Instrument for instantaneous in situ analysis of the mode structure of a high-power laser beam. J. Phys. E. 17:999–1007

    Article  CAS  Google Scholar 

  430. Wang ZY, Liu JT, Hirak DM, Weckman DC, Kerr HW (1992) Measurement of pulsed laser beam dimensions using KAPTON films. LIA Laser Inst. Am. 74(614):74–83

    Google Scholar 

  431. Tapia G, Elwany A (2014) A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing. J. Manuf. Sci. Eng. 136(6)

  432. Kaierle S, Ungers M, Franz C, Mann S, Abels P (2010) Understanding the Laser Process. Laser Tech. J. 7(2):49–52

    Article  Google Scholar 

  433. You DY, Gao XD, Katayama S (2014) Review of laser welding monitoring. Sci. Technol. Weld. Join. 19(3):181–201

    Article  Google Scholar 

  434. Stavridis J, Papacharalampopoulos A, Stavropoulos P (2018) Quality assessment in laser welding: a critical review. Int. J. Adv. Manuf. Technol. 94(5–8):1825–1847

    Article  Google Scholar 

  435. Cai W, Wang J, Jiang P, Cao L, Mi G, Zhou Q (2020) Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature. J. Manuf. Syst. 57:1–18

    Article  Google Scholar 

  436. Millon C, Vanhoye A, Obaton A-F, Penot J-D (May 2018) Development of laser ultrasonics inspection for online monitoring of additive manufacturing. Weld. World 62(3):653–661

    Article  Google Scholar 

  437. Yu JXZ, Webster PJL, Leung BYC, Fraser JM (2010) High-quality percussion drilling of silicon with a CW fiber laser. In: Proc. SPIE 7584 - laser appl. microelectron. optoelectron. Manuf. XV, V75840W

  438. Authier N, Touzet E, Lücking F, Sommerhuber R, Bruyere V, Namy P (2020) Coupled membrane free optical microphone and optical coherence tomography keyhole measurements to setup welding laser parameters. In Proc. SPIE 11273 - high-power laser materials processing: applications, diagnostics, and systems IX, V1127308

  439. Dorsch F, Braun H, Keßler S, Pfitzner D, Rominger V (2013) Online characterization of laser beam welds by NIR-camera observation. In: Proc. SPIE 8603 - high-power laser materials processing: lasers, beam delivery, diagnostics, and applications II, V86030R

  440. Stritt P et al (2016) Comprehensive process monitoring for laser welding process optimization. In: SPIE 9741 - high-power laser mater. Process. Lasers, Beam Deliv. Diagnostics, Appl. V97410Q

  441. Zhang Y, You D, Gao X, Katayama S (2019) Online monitoring of welding status based on a DBN model during laser welding. Engineering 5(4):671–678

  442. Precitec GmbH & Co. KG. Monitoring and control of welding depth during laser welding [Online]. Available: https://www.precitec.com/laser-welding/products/process-monitoring/precitec-idm/. Accessed 20 Oct 2020

  443. IPG Photonics Corporation (2018) LDD-700 inline welding process monitor [Online]. Available: https://www.ipgphotonics.com/en/215/FileAttachment/LDD-700+Application+Note.pdf. Accessed 26 Sept 2020

  444. DePond PJ et al (Sep. 2018) In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry. Mater. Des. 154(614):347–359

    Article  CAS  Google Scholar 

  445. Stadter C, Schmoeller M, Zeitler M, Tueretkan V, Munzert U, Zaeh MF (2019) Process control and quality assurance in remote laser beam welding by optical coherence tomography. J Laser Appl. 31(2):022408

    Article  Google Scholar 

  446. Webster PJL et al (2014) Automatic laser welding and milling with in situ inline coherent imaging. Opt. Lett. 39(21):6217–6220

    Article  CAS  Google Scholar 

  447. Boley M, Webster P, Heider A, Weber R, Graf T (2014) Investigating the keyhole behavior by using x-ray and optical depth measurement techniques. In: ICALEO 2014 - international congress on applications of lasers & electro-optics, pp 426–430

  448. Slangen PR, Essaidi Z, Chanut C, Lauret P, Heymes F, Aprin L (2018) Recent developments in high speed imaging and applications in speckle light. In: Proc. SPIE 10834 - VII international conference on speckle metrology, V108340T

  449. Photron, “FASTCAM SA-Z.” [Online]. Available: https://photron.com/wp-content/uploads/2020/10/SA-Z10.16.2020_LR.pdf. Accessed 15 Nov 2020

  450. Haubold MW, Zäh MF (2019) Real-time spatter detection in laser welding with beam oscillation. Procedia CIRP 79(614):159–164

    Article  Google Scholar 

  451. Liu T, Hu R, Chen X, Gong S, Pang S (2018) Localized boiling-induced spatters in the high-power laser welding of stainless steel: three-dimensional visualization and physical understanding. Appl. Phys. A 124(9):654

    Article  Google Scholar 

  452. Kratzsch C, Abels P, Kaierle S, Poprawe R, Schulz W (2000) Coaxial process control during laser beam welding of tailored blanks. In: SPIE 3888 - high-power lasers manuf 

  453. Gao X, You D, Katayama S (2012) Infrared image recognition for seam tracking monitoring during fiber laser welding. Mechatronics 22(4):370–380

    Article  Google Scholar 

  454. Fiedler W, Drenker A, Kaierle S (2010) Process monitoring and control during hybrid laser-ARC welding of medium section steel sheets. In: ICALEO 2010 - international congress on applications of lasers & electro-optics, pp 78–84

  455. AMADA WELD TECH (2019) MM-L300A laser weld monitor [Online]. Available: https://amadaweldtech.com/product/mm-l300/. Accessed 20 Sept 2020

  456. Precitec GmbH & Co. KG. Monitoring your laser welding processes in real time [Online]. Available: https://www.precitec.com/laser-welding/products/process-monitoring/laser-welding-monitor/. Accessed 8 Oct 2020

  457. Olsson R, Eriksson I, Powell J, Langtry AV, Kaplan AFH (2011) Challenges to the interpretation of the electromagnetic feedback from laser welding. Opt. Lasers Eng. 49(2):188–194

    Article  Google Scholar 

  458. Eriksson I, Kaplan AFH (2009) Evaluation of laser weld monitoring - a case study. In: ICALEO 2009 - 28th Int. Congr. Appl. Lasers Electro-Optics, Congr. Proc. 102:1419–1425

  459. Xiris automation, microphone for integration with a Xiris weld camera [Online]. Available: https://www.xiris.com/xiris-weldmic/. Accessed 12 Sept 2020

  460. Koester LW, Taheri H, Bond LJ, Faierson EJ (2019) Acoustic monitoring of additive manufacturing for damage and process condition determination. In: AIP Conf. Proc. 2102, 38:0200051-0200056

  461. Lee C-J, Kim J-D, Kim Y-C (Mar. 2015) Study on monitoring of plasma emission signal in lap welding of Zn coated steel sheet using CO2 laser. Int. J. Precis. Eng. Manuf. 16(3):495–500

    Article  Google Scholar 

  462. Eschner N, Weiser L, Häfner B, Lanza G (2020) Classification of specimen density in Laser Powder Bed Fusion (L-PBF) using in-process structure-borne acoustic process emissions. Addit. Manuf. 34:101324

    Google Scholar 

  463. Bastuck M, Herrmann H, Wolter B (2016) Acoustic inline process monitoring for laser welding applications. In: 19th world conf. non-destructive test 2016, pp 1–10

  464. Kanko JA, Sibley AP, Fraser JM (2016) In situ morphology-based defect detection of selective laser melting through inline coherent imaging. J. Mater. Process. Technol. J. 231:488–500

  465. Ji Y, Grindal AW, Webster PJL, Fraser JM (2015) Real-time depth monitoring and control of laser machining through scanning beam delivery system. J. Phys. D. Appl. Phys. 48(15)

  466. Fraser JM (2012) Laser process monitoring and automatic control at kHz rates through inline coherent imaging. AIP Conf. Proc. 1464:492–496

    Article  Google Scholar 

  467. Schmitt R, Mallmann G, Peterka P (2011) Development of a FD-OCT for the inline process metrology in laser structuring systems. In: Proc. SPIE 8082 - Opt. Meas. Syst. Ind. Insp. VII, 808228

  468. Dorsch F et al (2019) Controlling laser processing via optical coherence topography. In: Proc. SPIE 10911 - high-power laser materials processing: applications, diagnostics, and systems VIII, 109110G

  469. Webster PJLL, Wright LG, Mortimer KD, Leung BY, Yu JXZZ, Fraser JM (2011) Automatic real-time guidance of laser machining with inline coherent imaging. J. Laser Appl. 23(2):022001

    Article  Google Scholar 

  470. Kogel-Hollacher M, André S, Beck T (2018) Low-coherence interferometry in laser processing: a new sensor approach heading for industrial applications. In: Proc. SPIE 10749 - interferometry XIX, 1074912

  471. Webster PJL, Leung BYC, Yu JXZ, Anderson MD, Hoult TP, Fraser JM (2010) Coaxial real-time metrology and gas assisted laser micromachining: process development, stochastic behavior, and feedback control. In: Proc. SPIE 7590 - Micromach. Microfabr. Process Technol. XV, 759003

  472. Boley M, Fetzer F, Weber R, Graf T (2019) Statistical evaluation method to determine the laser welding depth by optical coherence tomography. Opt. Lasers Eng. 119:56–64

    Article  Google Scholar 

  473. Kogel-Hollacher M, André S, Beck T New horizons in laser material processing: how OCT sets new standards. In: Proc. SPIE 10911 - high-power laser materials processing: applications, diagnostics, and systems VIII, 109110F

  474. Webster PJL, Wright LG, Mortimer KD, Leung BY, Yu JXZ, Fraser JM (2010) Automatic real-time guidance of laser machining with inline coherent imaging. In: 29th Int. Congr. Appl. Lasers Electro-Optics, ICALEO 2010 Congr. Proc. 103:1386–1393

  475. Webster PJL, Yu JXZ, Leung BYC, Wright LG, Mortimer KD, Fraser JM (2010) Inline coherent imaging of laser micromachining. In: 2010 international symposium on optomechatronic technologies, 5687305

  476. Mittelstädt C, Mattulat T, Seefeld T, Kogel-Hollacher M (2019) Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel. J. Laser Appl. 31(2):022007

    Article  Google Scholar 

  477. Fleming TG, Nestor SGL, Allen TR, Boukhaled MA, Smith NJ, Fraser JM (2020) Tracking and controlling the morphology evolution of 3D powder-bed fusion in situ using inline coherent imaging. Addit. Manuf. 32: 100978

  478. Schmoeller M, Stadter C, Liebl S, Zaeh MF (2019) Inline weld depth measurement for high brilliance laser beam sources using optical coherence tomography. J. Laser Appl. 31(2):022409

    Article  Google Scholar 

  479. Blecher JJ et al (Oct. 2014) Real time monitoring of laser beam welding keyhole depth by laser interferometry. Sci. Technol. Weld. Join. 19(7):560–564

    Article  CAS  Google Scholar 

  480. Yun SH, Tearney GJ, de Boer JF, Bouma BE (2004) Motion artifacts in optical coherence tomography with frequency-domain ranging. Opt. Express 12(13):2977

    Article  CAS  Google Scholar 

  481. Webster PJL, Muller MS, Fraser JM (2007) High speed in situ depth profiling of ultrafast micromachining. Opt. Express 15(23):14967

    Article  Google Scholar 

  482. Wiesner M, Ihlemann J, Müller HH, Lankenau E, Hüttmann G (2010) Optical coherence tomography for process control of laser micromachining. Rev. Sci. Instrum 81(3):033705

    Article  Google Scholar 

  483. Smurov I (2001) Pyrometry applications in laser machining. In: Proc. SPIE 4157 - Laser-Assisted Microtechnology 2000, pp 55–66

  484. Fossum ER (1997) CMOS Image Sensors: Electronic Camera-On-A-Chip. IEEE Trans. Electron Devices 44(10):1689–1698

  485. Harooni M, Carlson B, Kovacevic R (2014) Detection of defects in laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration by a real-time spectroscopic analysis. Opt. Lasers Eng. 56:54–66

    Article  Google Scholar 

  486. Kawahito Y (Feb. 2006) In-Process Monitoring and Adaptive Control during Pulsed YAG Laser Spot Welding of Aluminum Alloy Thin Sheets. J. Laser Micro/Nanoengineering 1(1):33–38

    Article  CAS  Google Scholar 

  487. Schmidt M, Otto A, Kägeler C (2008) Analysis of YAG laser lap-welding of zinc coated steel sheets. CIRP Ann. 57(1):213–216

    Article  Google Scholar 

  488. De Bono P, Allen C, D’Angelo G, Cisi A (2017) Investigation of optical sensor approaches for real-time monitoring during fibre laser welding. J. Laser Appl 29(2):022417

    Article  Google Scholar 

  489. Schmidt M et al (2007) Process control in laser manufacturing–dream or reality? In: International congress on applications of lasers & electro-optics 1907:1087

  490. Kawahito Y (2006) In-process monitoring and adaptive control for laser spot and seam welding of pure titanium. J. Laser Micro/Nanoengineering 1(3):269–274

  491. Kawahito Y, Kito M, Katayama S, Nakamura H (2005) In-process monitoring and adaptive control in YAG laser butt micro-welding of titanium. In: 24th Int. Congr. Appl. Lasers Electro-Optics, ICALEO 2005 - Congr. Proc., P504:276–285

  492. Geiger M, Kägeler C, Schmidt M (2008) High-power laser welding of contaminated steel sheets. Prod. Eng. 2(3):235–240

  493. Zhang Y, Gao X, You D, Ge W (2019) A Low-Cost Welding Status Monitoring Framework for High-Power Disk Laser Welding (December 2018). IEEE Access 7:17365–17376

    Article  Google Scholar 

  494. Gökhan Demir A, De Giorgi C, Previtali B (2018) Design and Implementation of a Multisensor Coaxial Monitoring System With Correction Strategies for Selective Laser Melting of a Maraging Steel. J Manuf Sci Eng 140(4):1–14

    Article  Google Scholar 

  495. Masinelli G, Le-Quang T, Zanoli S, Wasmer K, Shevchik SA (2020) Adaptive Laser Welding Control: A Reinforcement Learning Approach. IEEE Access 8:103803–103814

    Article  Google Scholar 

  496. Liu G, Gao X, You D, Zhang N (2019) Prediction of high power laser welding status based on PCA and SVM classification of multiple sensors. J. Intell. Manuf. 30(2):821–832

    Article  Google Scholar 

  497. Kawahito Y, Ohnishi T, Katayama S (2009) In-process monitoring and feedback control for stable production of full-penetration weld in continuous wave fibre laser welding. J. Phys. D. Appl. Phys. 42(8):085501

    Article  Google Scholar 

  498. You D, Gao X, Katayama S (2014) Multisensor fusion system for monitoring high-power disk laser welding using support vector machine. IEEE Trans. Ind. Informatics 10(2):1285–1295

    Article  Google Scholar 

  499. Kawahito Y, Kawasaki M, Katayama S (2008) In-process monitoring and adaptive control during micro welding with CW fiber laser. J. Laser Micro/Nanoengineering 3(1):46–51

    Article  CAS  Google Scholar 

  500. Kawahito Y, Kito M, Katayama S (2007) In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser. J. Phys. D. Appl. Phys. 40(9):2972–2978

  501. Kawahito Y, Katayama S (2005) In-process monitoring and adaptive control for lap welds of aluminum alloy sheets. In: International congress on applications of lasers & electro-optics, ICALEO 2005 - Congr. Proc. 2305:905–914

  502. Norman P, Engström H, Kaplan AFH (2008) Theoretical analysis of photodiode monitoring of laser welding defects by imaging combined with modelling. J. Phys. D. Appl. Phys. 41(19)

  503. Bertrand P, Smurov I, Ignatiev M, Grevey D (2003) Application of near infrared pyrometry for CW Nd:YAG laser welding of stainless steel and laser cladding of stellite. Laser Process. Adv. Mater. Laser Microtechnologies 5121(614):346

    Article  Google Scholar 

  504. Forien J-B, Calta NP, DePond PJ, Guss GM, Roehling TT, Matthews MJ (2020) Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex situ X-ray radiography. Addit. Manuf. 35:101336

    CAS  Google Scholar 

  505. Schmailzl A, Quandt B, Schmidt M, Hierl S (2018) In-Situ process monitoring during laser transmission welding of PA6-GF30. Procedia CIRP 74:524–527

    Article  Google Scholar 

  506. Xiao X, Liu X, Cheng M, Song L (2020) Towards monitoring laser welding process via a coaxial pyrometer. J. Mater. Process. Technol. 277:116409

  507. Smurov I, Doubenskaia M, Zaitsev A (2013) Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation. Surf. Coatings Technol. 220:112–121

    Article  CAS  Google Scholar 

  508. Doubenskaia M, Grigoriev S, Zhirnov I, Smurov I (2016) Parametric analysis of SLM using comprehensive optical monitoring. Rapid Prototyp. J. 22(1):40–50

    Article  Google Scholar 

  509. Mamuschkin V, Haeusler A, Engelmann C, Olowinsky A, Aehling H (2017) Enabling pyrometry in absorber-free laser transmission welding through pulsed irradiation. J. Laser Appl. 29(2):022409

    Article  Google Scholar 

  510. Köhler H, Thomy C, Vollertsen F (2016) Contact-less temperature measurement and control with applications to laser cladding. Weld. World 60(1):1–9

    Article  Google Scholar 

  511. Ignatiev M, Smurov IY, Flamant G, Senchenko VN, Dozhdikov VS (1997) Surface Temperature Monitoring During Pulsed Laser, Electron Beam and Plasma Action. High Temp. Mater. Process.:109–123

  512. Cho C-H, Hsieh Y-C, Chen H-Y (2015) Welding pool measurement using thermal array sensor. In: Proc. SPIE 9609 - infrared sensors, devices, Appl. V, 960912

  513. Mrna L, Sarbort M, Rerucha S, Jedlicka P (2017) Autocorrelation analysis of plasma plume light emissions in deep penetration laser welding of steel. J. Laser Appl. 29(1):012009

    Article  Google Scholar 

  514. Kaplan AFH (2015) Local flashing events at the keyhole front in laser welding. Opt. Lasers Eng. 68:35–41

    Article  Google Scholar 

  515. You D, Gao X, Katayama S (2014) Monitoring of high-power laser welding using high-speed photographing and image processing. Mech. Syst. Signal Process. 49(1–2):39–52

    Article  Google Scholar 

  516. Lu R, Wei H, Li F, Zhang Z, Liang Z, Li B (2020) In-situ monitoring of the penetration status of keyhole laser welding by using a support vector machine with interaction time conditioned keyhole behaviors. Opt. Lasers Eng. 130

  517. Dorsch F, Braun H, Keßler S, Pfitzner D, Rominger V (2014) Online NIR diagnostic of laser welding processes and its potential for quality assuring sensor systems. In: Proc. SPIE 8963 - high-power laser materials processing: lasers, beam delivery, diagnostics, and applications III, 89630R

  518. Kim C-H, Ahn D-C (2012) Coaxial monitoring of keyhole during Yb:YAG laser welding. Opt. Laser Technol. 44(6):1874–1880

    Article  CAS  Google Scholar 

  519. Lee S, Ahn S, Park C (2014) Analysis of Acoustic Emission Signals During Laser Spot Welding of SS304 Stainless Steel. J. Mater. Eng. Perform. 23(3):700–707

    Article  CAS  Google Scholar 

  520. Luo Y, Zhu L, Han J, Xie X, Wan R, Zhu Y (2019) Study on the acoustic emission effect of plasma plume in pulsed laser welding. Mech. Syst. Signal Process. 124:715–723

    Article  Google Scholar 

  521. Farson DF (2000) Progress in real time laser process monitoring: Theory and practice. Sci. Technol. Weld. Join. 5(3):194–201

    Article  Google Scholar 

  522. Fang C-K, Kannatey-Asibu E, Barber JR (1997) Far-field initial response of acoustic emission from cracking in a weldment. J. Manuf. Sci. Eng. 119(3):281–289

  523. Farson DF, Ali A, Li XC (1999) Laser weld penetration monitoring with multiple emission signal measurements. J. Laser Appl. 11(2):47–53

    Article  Google Scholar 

  524. Sun A, Asibu EK, Gartner M (2002) Real-time monitoring of laser weld penetration using sensor fusion. J. Laser Appl. 14(2):114–121

  525. Wasmer K et al (2018) Laser processing quality monitoring by combining acoustic emission and machine learning: A high-speed X-ray imaging approach. Procedia CIRP 74:654–658

    Article  Google Scholar 

  526. Shevchik S et al (2020) Supervised deep learning for real-time quality monitoring of laser welding with X-ray radiographic guidance. Sci. Rep. 10(1):3389

    Article  CAS  Google Scholar 

  527. Miyazaki T, Yoshioka S, Shirai Y, Kanekama N, Kimura T, Taniguchi N (1985) Monitoring Electron Beam Machining by Generated Acoustic Emission. CIRP Ann. 34(1):503–506

    Article  Google Scholar 

  528. Shevchik SA et al (2019) Laser Welding Quality Monitoring via Graph Support Vector Machine With Data Adaptive Kernel. IEEE Access 7:93108–93122

    Article  Google Scholar 

  529. Arnot RS, Albright CE (1983) Plasma plume effects in pulsed carbon dioxide laser spot welding. In: International congress on applications of lasers & electro-optics, ICALEO 1983 - Congr. Proc. 38:51–58

  530. Ancona A, Spagnolo V, Lugarà PM, Ferrara M (2001) Optical sensor for real-time monitoring of CO2 laser welding process. Appl. Opt. 40(33):6019

  531. Sibillano T et al (2012) Spectroscopic closed loop control of penetration depth in laser beam welding process. In: Proc. SPIE 8239 - high power laser mater. process. lasers, beam deliv. diagnostics, appl., 82390S

  532. Sibillano T et al (2012) Spectroscopic monitoring of penetration depth in CO2 Nd:YAG and fiber laser welding processes. J. Mater. Process. Technol 212(4):910–916

  533. Sibillano T, Ancona A, Berardi V, Lugarà PM (2005) Correlation analysis in laser welding plasma. Opt. Commun. 251(1–3):139–148

    Article  CAS  Google Scholar 

  534. Zhang Y, Zhang C, Tan L, Li S (2013) Coaxial monitoring of the fibre laser lap welding of Zn-coated steel sheets using an auxiliary illuminant. Opt. Laser Technol. 50:167–175

  535. Kong F, Ma J, Carlson B, Kovacevic R (2012) Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration. Opt. Laser Technol. 44(7):2186–2196

    Article  CAS  Google Scholar 

  536. Liu W, Liu S, Ma J, Kovacevic R (2014) Real-time monitoring of the laser hot-wire welding process. Opt. Laser Technol. 57:66–76

    Article  CAS  Google Scholar 

  537. Zhang YM, Zhang SB, Liu YC (2001) A plasma cloud charge sensor for pulse keyhole process control. Meas. Sci. Technol. 12(8):1365–1370

  538. Lu W, Zhang YM, Emmerson J (2004) Sensing of weld pool surface using non-transferred plasma charge sensor. Meas. Sci. Technol. 15(5):991–999

    Article  CAS  Google Scholar 

  539. Li L, Brookfield DJ, Steen WM (1996) Plasma charge sensor for in-process, non-contact monitoring of the laser welding process. Meas. Sci. Technol. 7(4):615–626

    Article  CAS  Google Scholar 

  540. Huang Y, Xu S, Yang L, Zhao S, Liu Y, Shi Y (2019) Defect detection during laser welding using electrical signals and high-speed photography. J. Mater. Process. Technol. 271:394–403

    Article  Google Scholar 

  541. Trushnikov D, Belenkiy V, Shchavlev V, Piskunov A, Abdullin A, Mladenov G (2012) Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation. Sensors 12(12):17433–17445

    Article  Google Scholar 

  542. Lee SH, Mazumder J, Park J, Kim S (2020) Ranked feature-based laser material processing monitoring and defect diagnosis using k-NN and SVM. J. Manuf. Process. 55(2020):307–316

  543. Huang Y, Hou S, Xu S, Zhao S, Yang L, Zhang Z (2019) EMD- PNN based welding defects detection using laser-induced plasma electrical signals. J. Manuf. Process. 45:642–651

  544. Kuo B-S, Lu M-C (2020) Analysis of a Sound Signal for Quality Monitoring in Laser Microlap Welding. Appl. Sci. 10(6):1934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was supported through the National Science Foundation (NSF) sponsored Industry/University Cooperative Research Center (I/UCRC): Manufacturing and Materials Joining Innovation Center (MA2JIC). The authors would like to thank Los Alamos National Laboratory (LANL) for providing financial support and, in particular, Dr. Matt Johnson and Dr. David Tung who have served as mentors for this project. Also, the authors would like to thank Dr. Pat Hochanadel and Dr. Tung from LANL, and Mr. Doug Kautz from Leidos Inc. for reviewing the manuscript and providing valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Patterson.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IV - Power Beam Processes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson, T., Hochanadel, J., Sutton, S. et al. A review of high energy density beam processes for welding and additive manufacturing applications. Weld World 65, 1235–1306 (2021). https://doi.org/10.1007/s40194-021-01116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01116-0

Keywords

Navigation