Skip to main content

Advertisement

Log in

Using Zebrafish to Model Liver Diseases-Where Do We Stand?

  • Xenopus and Zebrafish Models for Pathobiology (W Goessling and A Zorn, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of review

The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models.

Recent findings

The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration.

Summary

In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181–194. doi:10.1038/nri3623

    Article  CAS  PubMed  Google Scholar 

  2. Scaglione S, Kliethermes S, Cao G, Shoham D, Durazo R, Luke A et al (2015) The epidemiology of cirrhosis in the United States: a population-based study. J Clin Gastroenterol 49(8):690–696. doi:10.1097/MCG.0000000000000208

    Article  PubMed  Google Scholar 

  3. Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122(7):2337–2343. doi:10.1172/JCI60434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI et al (2015) Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 21(42):12042–12058. doi:10.3748/wjg.v21.i42.12042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Si-Tayeb K, Lemaigre FP, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18(2):175–189. doi:10.1016/j.devcel.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  6. Gebhardt R, Matz-Soja M (2014) Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J Gastroenterol 20(26):8491–8504. doi:10.3748/wjg.v20.i26.8491

    Article  PubMed  PubMed Central  Google Scholar 

  7. Her GM, Chiang CC, Chen WY, Wu JL (2003) In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 538(1–3):125–133

    Article  CAS  PubMed  Google Scholar 

  8. Parsons MJ, Pisharath H, Yusuff S, Moore JC, Siekmann AF, Lawson N et al (2009) Notch-responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech Dev 126(10):898–912. doi:10.1016/j.mod.2009.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilkins BJ, Gong W, Pack M (2014) A novel keratin18 promoter that drives reporter gene expression in the intrahepatic and extrahepatic biliary system allows isolation of cell-type specific transcripts from zebrafish liver. Gene Expr Patterns 14(2):62–68. doi:10.1016/j.gep.2013.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chi NC, Shaw RM, De Val S, Kang G, Jan LY, Black BL et al (2008) Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev 22(6):734–739. doi:10.1101/gad.1629408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yin C, Evason KJ, Maher JJ, Stainier DY (2012) The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 56(5):1958–1970. doi:10.1002/hep.25757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bollig F, Perner B, Besenbeck B, Kothe S, Ebert C, Taudien S et al (2009) A highly conserved retinoic acid responsive element controls wt1a expression in the zebrafish pronephros. Development 136(17):2883–2892. doi:10.1242/dev.031773

    Article  CAS  PubMed  Google Scholar 

  13. Dong PD, Munson CA, Norton W, Crosnier C, Pan X, Gong Z et al (2007) Fgf10 regulates hepatopancreatic ductal system patterning and differentiation. Nat Genet 39(3):397–402. doi:10.1038/ng1961

    Article  CAS  PubMed  Google Scholar 

  14. Gard AL, White FP, Dutton GR (1985) Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J Neuroimmunol 8(4–6):359–375

    Article  CAS  PubMed  Google Scholar 

  15. Sakaguchi TF, Sadler KC, Crosnier C, Stainier DY (2008) Endothelial signals modulate hepatocyte apicobasal polarization in zebrafish. Curr Biol 18(20):1565–1571. doi:10.1016/j.cub.2008.08.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crosnier C, Vargesson N, Gschmeissner S, Ariza-McNaughton L, Morrison A, Lewis J (2005) Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 132(5):1093–1104. doi:10.1242/dev.01644

    Article  CAS  PubMed  Google Scholar 

  17. Matthews RP, Lorent K, Russo P, Pack M (2004) The zebrafish onecut gene hnf-6 functions in an evolutionarily conserved genetic pathway that regulates vertebrate biliary development. Dev Biol 274(2):245–259. doi:10.1016/j.ydbio.2004.06.016

    Article  CAS  PubMed  Google Scholar 

  18. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J et al (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273(16):10046–10050

    Article  CAS  PubMed  Google Scholar 

  19. Sadler KC, Amsterdam A, Soroka C, Boyer J, Hopkins N (2005) A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Development 132(15):3561–3572. doi:10.1242/dev.01918

    Article  CAS  PubMed  Google Scholar 

  20. Yokoi Y, Namihisa T, Kuroda H, Komatsu I, Miyazaki A, Watanabe S et al (1984) Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology 4(4):709–714

    Article  CAS  PubMed  Google Scholar 

  21. Pack M, Solnica-Krezel L, Malicki J, Neuhauss SC, Schier AF, Stemple DL et al (1996) Mutations affecting development of zebrafish digestive organs. Development 123:321–328

    CAS  PubMed  Google Scholar 

  22. Liu W, Chen JR, Hsu CH, Li YH, Chen YM, Lin CY et al (2012) A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 56(6):2268–2276. doi:10.1002/hep.25914

    Article  CAS  PubMed  Google Scholar 

  23. Passeri MJ, Cinaroglu A, Gao C, Sadler KC (2009) Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology 49(2):443–452. doi:10.1002/hep.22667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nussbaum JM, Liu LJ, Hasan SA, Schaub M, McClendon A, Stainier DY et al (2013) Homeostatic generation of reactive oxygen species protects the zebrafish liver from steatosis. Hepatology 58(4):1326–1338. doi:10.1002/hep.26551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Howarth DL, Yin C, Yeh K, Sadler KC (2013) Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish larvae. Zebrafish 10(2):199–210. doi:10.1089/zeb.2012.0821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farber SA, Pack M, Ho SY, Johnson ID, Wagner DS, Dosch R et al (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292(5520):1385–1388. doi:10.1126/science.1060418

    Article  CAS  PubMed  Google Scholar 

  27. Farber SA, Olson ES, Clark JD, Halpern ME (1999) Characterization of Ca2+−dependent phospholipase A2 activity during zebrafish embryogenesis. J Biol Chem 274(27):19338–19346

    Article  CAS  PubMed  Google Scholar 

  28. Carten JD, Bradford MK, Farber SA (2011) Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev Biol 360(2):276–285. doi:10.1016/j.ydbio.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lorent K, Yeo SY, Oda T, Chandrasekharappa S, Chitnis A, Matthews RP et al (2004) Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy. Development 131(22):5753–5766. doi:10.1242/dev.01411

    Article  CAS  PubMed  Google Scholar 

  30. Boyer JL (2013) Bile formation and secretion. Compr Physiol 3(3):1035–1078. doi:10.1002/cphy.c120027

    PubMed  PubMed Central  Google Scholar 

  31. Yao Y, Lin J, Yang P, Chen Q, Chu X, Gao C et al (2012) Fine structure, enzyme histochemistry, and immunohistochemistry of liver in zebrafish. Anat Rec (Hoboken) 295(4):567–576. doi:10.1002/ar.22416

    Article  CAS  Google Scholar 

  32. Shin D, Shin CH, Tucker J, Ober EA, Rentzsch F, Poss KD et al (2007) Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 134(11):2041–2050. doi:10.1242/dev.000281

    Article  CAS  PubMed  Google Scholar 

  33. Field HA, Ober EA, Roeser T, Stainier DY (2003) Formation of the digestive system in zebrafish. I Liver morphogenesis Dev Biol 253(2):279–290

    CAS  PubMed  Google Scholar 

  34. Zong Y, Stanger BZ (2011) Molecular mechanisms of bile duct development. Int J Biochem Cell Biol 43(2):257–264. doi:10.1016/j.biocel.2010.06.020

    Article  CAS  PubMed  Google Scholar 

  35. Lorent K, Moore JC, Siekmann AF, Lawson N, Pack M (2010) Reiterative use of the Notch signal during zebrafish intrahepatic biliary development. Dev Dyn 239(3):855–864. doi:10.1002/dvdy.22220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. • Zhang C, Ellis JL, Yin C (2016) Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish. Dis Model Mech 9(11):1383–1396. doi:10.1242/dmm.024950 This study investigated the molecular mechanisms underlying multiple pathogenic processes occuring during acute alcoholic liver injury and elucidated how steatosis, angiogenesis, and fibrogenesis are linked among each other

    Article  PubMed  PubMed Central  Google Scholar 

  37. • Asaoka Y, Terai S, Sakaida I, Nishina H (2013) The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech 6(4):905–914. doi:10.1242/dmm.011981 This is an excellent review of recent advances in using zebrafish to model NAFLD

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Delous M, Yin C, Shin D, Ninov N, Debrito Carten J, Pan L et al (2012) Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet 8(6):e1002754. doi:10.1371/journal.pgen.1002754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feldman AG, Sokol RJ. Neonatal Cholestasis. Neoreviews. 2013;14(2). doi:10.1542/neo.14-2-e63

  40. Balistreri WF, Bezerra JA (2006) Whatever happened to "neonatal hepatitis"? Clin Liver Dis 10(1):27–53v. doi:10.1016/j.cld.2005.10.008

    Article  PubMed  Google Scholar 

  41. Verkade HJ, Bezerra JA, Davenport M, Schreiber RA, Mieli-Vergani G, Hulscher JB et al (2016) Biliary atresia and other cholestatic childhood diseases: advances and future challenges. J Hepatol 65(3):631–642. doi:10.1016/j.jhep.2016.04.032

    Article  PubMed  Google Scholar 

  42. Asai A, Miethke A, Bezerra JA (2015) Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol. 12(6):342–352. doi:10.1038/nrgastro.2015.74

    Article  PubMed  PubMed Central  Google Scholar 

  43. Petersen C, Biermanns D, Kuske M, Schakel K, Meyer-Junghanel L, Mildenberger H (1997) New aspects in a murine model for extrahepatic biliary atresia. J Pediatr Surg 32(8):1190–1195

    Article  CAS  PubMed  Google Scholar 

  44. Petersen C, Grasshoff S, Luciano L (1998) Diverse morphology of biliary atresia in an animal model. J Hepatol 28(4):603–607

    Article  CAS  PubMed  Google Scholar 

  45. Riepenhoff-Talty M, Schaekel K, Clark HF, Mueller W, Uhnoo I, Rossi T et al (1993) Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr Res 33(4 Pt 1):394–399. doi:10.1203/00006450-199304000-00016

    CAS  PubMed  Google Scholar 

  46. •• Cui S, Leyva-Vega M, Tsai EA, EauClaire SF, Glessner JT, Hakonarson H et al (2013) Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 144(5):1107–15 e3. doi:10.1053/j.gastro.2013.01.022 This study provides an excellent example of how zebrafish can be used to validate variants from patient GWAS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang V, Cofer ZC, Cui S, Sapp V, Loomes KM, Matthews RP (2016) Loss of a candidate biliary atresia susceptibility gene, add3a, causes biliary developmental defects in zebrafish. J Pediatr Gastroenterol Nutr 63(5):524–530. doi:10.1097/MPG.0000000000001375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Omenetti A, Bass LM, Anders RA, Clemente MG, Francis H, Guy CD et al (2011) Hedgehog activity, epithelial-mesenchymal transitions, and biliary dysmorphogenesis in biliary atresia. Hepatology 53(4):1246–1258. doi:10.1002/hep.24156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ningappa M, So J, Glessner J, Ashokkumar C, Ranganathan S, Min J et al (2015) The role of ARF6 in biliary atresia. PLoS One 10(9):e0138381. doi:10.1371/journal.pone.0138381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. •• Lorent K, Gong W, Koo KA, Waisbourd-Zinman O, Karjoo S, Zhao X et al (2015) Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med 7(286):286ra67. doi:10.1126/scitranslmed.aaa1652 This is the first animal study that confirms the involvement of environmental toxins in the pathogenesis of biliary atresia

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. • Zhao X, Lorent K, Wilkins BJ, Marchione DM, Gillespie K, Waisbourd-Zinman O et al (2016) Glutathione antioxidant pathway activity and reserve determine toxicity and specificity of the biliary toxin biliatresone in zebrafish. Hepatology 64(3):894–907. doi:10.1002/hep.28603 This work demonstrated the critical role of glutathione-mediated redox signaling in the pathogenesis of toxin-induced BA

    Article  CAS  PubMed  Google Scholar 

  52. Waisbourd-Zinman O, Koh H, Tsai S, Lavrut PM, Dang C, Zhao X et al (2016) The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology 64(3):880–893. doi:10.1002/hep.28599

    Article  CAS  PubMed  Google Scholar 

  53. Matthews RP, Eauclaire SF, Mugnier M, Lorent K, Cui S, Ross MM et al (2011) DNA hypomethylation causes bile duct defects in zebrafish and is a distinguishing feature of infantile biliary atresia. Hepatology 53(3):905–914. doi:10.1002/hep.24106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bezerra JA, Tiao G, Ryckman FC, Alonso M, Sabla GE, Shneider B et al (2002) Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 360(9346):1653–1659. doi:10.1016/S0140-6736(02)11603-5

    Article  PubMed  Google Scholar 

  55. Shivakumar P, Campbell KM, Sabla GE, Miethke A, Tiao G, McNeal MM et al (2004) Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia. J Clin Invest 114(3):322–329. doi:10.1172/JCI21153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cofer ZC, Cui S, EauClaire SF, Kim C, Tobias JW, Hakonarson H et al (2016) Methylation microarray studies highlight PDGFA expression as a factor in biliary atresia. PLoS One 11(3):e0151521. doi:10.1371/journal.pone.0151521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Penton AL, Leonard LD, Spinner NB (2012) Notch signaling in human development and disease. Semin Cell Dev Biol 23(4):450–457. doi:10.1016/j.semcdb.2012.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cullinane AR, Straatman-Iwanowska A, Zaucker A, Wakabayashi Y, Bruce CK, Luo G et al (2010) Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat Genet 42(4):303–312. doi:10.1038/ng.538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matthews RP, Plumb-Rudewiez N, Lorent K, Gissen P, Johnson CA, Lemaigre F et al (2005) Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 132(23):5295–5306. doi:10.1242/dev.02140

    Article  CAS  PubMed  Google Scholar 

  60. Wilkins BJ, Lorent K, Matthews RP, Pack M (2013) p53-mediated biliary defects caused by knockdown of cirh1a, the zebrafish homolog of the gene responsible for North American Indian childhood cirrhosis. PLoS One 8(10):e77670. doi:10.1371/journal.pone.0077670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Srivastava A (2014) Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol 4(1):25–36. doi:10.1016/j.jceh.2013.10.005

    Article  PubMed  Google Scholar 

  62. Annilo T, Chen ZQ, Shulenin S, Costantino J, Thomas L, Lou H et al (2006) Evolution of the vertebrate ABC gene family: analysis of gene birth and death. Genomics 88(1):1–11. doi:10.1016/j.ygeno.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  63. Everson GT, Taylor MR, Doctor RB (2004) Polycystic disease of the liver. Hepatology 40(4):774–782. doi:10.1002/hep.20431

    Article  CAS  PubMed  Google Scholar 

  64. Masyuk T, Masyuk A, LaRusso N (2009) Cholangiociliopathies: genetics, molecular mechanisms and potential therapies. Curr Opin Gastroenterol 25(3):265–271. doi:10.1097/MOG.0b013e328328f4ff

    Article  CAS  PubMed  Google Scholar 

  65. Tietz Bogert PS, Huang BQ, Gradilone SA, Masyuk TV, Moulder GL, Ekker SC et al (2013) The zebrafish as a model to study polycystic liver disease. Zebrafish 10(2):211–217. doi:10.1089/zeb.2012.0825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao H, Wang Y, Wegierski T, Skouloudaki K, Putz M, Fu X et al (2010) PRKCSH/80K-H, the protein mutated in polycystic liver disease, protects polycystin-2/TRPP2 against HERP-mediated degradation. Hum Mol Genet 19(1):16–24. doi:10.1093/hmg/ddp463

    Article  CAS  PubMed  Google Scholar 

  67. Monk KR, Voas MG, Franzini-Armstrong C, Hakkinen IS, Talbot WS (2013) Mutation of sec63 in zebrafish causes defects in myelinated axons and liver pathology. Dis Model Mech 6(1):135–145. doi:10.1242/dmm.009217

    Article  PubMed  Google Scholar 

  68. Strazzabosco M, Somlo S (2011) Polycystic liver diseases: congenital disorders of cholangiocyte signaling. Gastroenterology 140(7):1855–1859, 9 e1. doi:10.1053/j.gastro.2011.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cohen JI, Nagy LE (2011) Pathogenesis of alcoholic liver disease: interactions between parenchymal and non-parenchymal cells. J Dig Dis 12(1):3–9. doi:10.1111/j.1751-2980.2010.00468.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Louvet A, Mathurin P (2015) Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 12(4):231–242. doi:10.1038/nrgastro.2015.35

    Article  PubMed  Google Scholar 

  71. Lin JN, Chang LL, Lai CH, Lin KJ, Lin MF, Yang CH et al (2015) Development of an animal model for alcoholic liver disease in zebrafish. Zebrafish 12(4):271–280. doi:10.1089/zeb.2014.1054

    Article  CAS  PubMed  Google Scholar 

  72. Llerena S, Arias-Loste MT, Puente A, Cabezas J, Crespo J, Fabrega E (2015) Binge drinking: burden of liver disease and beyond. World J Hepatol 7(27):2703–2715. doi:10.4254/wjh.v7.i27.2703

    Article  PubMed  PubMed Central  Google Scholar 

  73. Bukong TN, Iracheta-Vellve A, Gyongyosi B, Ambade A, Catalano D, Kodys K et al (2016) Therapeutic benefits of spleen tyrosine kinase inhibitor administration on binge drinking-induced alcoholic liver injury, steatosis, and inflammation in mice. Alcohol Clin Exp Res 40(7):1524–1530. doi:10.1111/acer.13096

    Article  CAS  PubMed  Google Scholar 

  74. Ki SH, Park O, Zheng M, Morales-Ibanez O, Kolls JK, Bataller R et al (2010) Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 52(4):1291–1300. doi:10.1002/hep.23837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsuchiya M, Ji C, Kosyk O, Shymonyak S, Melnyk S, Kono H et al (2012) Interstrain differences in liver injury and one-carbon metabolism in alcohol-fed mice. Hepatology 56(1):130–139. doi:10.1002/hep.25641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chang B, Xu MJ, Zhou Z, Cai Y, Li M, Wang W et al (2015) Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1. Hepatology 62(4):1070–1085. doi:10.1002/hep.27921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gabele E, Dostert K, Dorn C, Patsenker E, Stickel F, Hellerbrand C (2011) A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis. Alcohol Clin Exp Res 35(7):1361–1367. doi:10.1111/j.1530-0277.2011.01472.x

    Article  PubMed  CAS  Google Scholar 

  78. Lassen N, Estey T, Tanguay RL, Pappa A, Reimers MJ, Vasiliou V (2005) Molecular cloning, baculovirus expression, and tissue distribution of the zebrafish aldehyde dehydrogenase 2. Drug Metab Dispos 33(5):649–656. doi:10.1124/dmd.104.002964

    Article  CAS  PubMed  Google Scholar 

  79. Reimers MJ, Flockton AR, Tanguay RL (2004) Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicol Teratol 26(6):769–781. doi:10.1016/j.ntt.2004.06.012

    Article  CAS  PubMed  Google Scholar 

  80. Reimers MJ, Hahn ME, Tanguay RL (2004) Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics. J Biol Chem 279(37):38303–38312. doi:10.1074/jbc.M401165200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. •• Howarth DL, Lindtner C, Vacaru AM, Sachidanandam R, Tsedensodnom O, Vasilkova T et al (2014) Activating transcription factor 6 is necessary and sufficient for alcoholic fatty liver disease in zebrafish. PLoS Genet 10(5):e1004335. doi:10.1371/journal.pgen.1004335 This study provides systematic analyses on the contributions of unfolded protein responses to acute alcoholic liver disease

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Cinaroglu A, Gao C, Imrie D, Sadler KC (2011) Activating transcription factor 6 plays protective and pathological roles in steatosis due to endoplasmic reticulum stress in zebrafish. Hepatology 54(2):495–508. doi:10.1002/hep.24396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tsedensodnom O, Vacaru AM, Howarth DL, Yin C, Sadler KC (2013) Ethanol metabolism and oxidative stress are required for unfolded protein response activation and steatosis in zebrafish with alcoholic liver disease. Dis Model Mech 6(5):1213–1226. doi:10.1242/dmm.012195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Willebrords J, Pereira IV, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B et al (2015) Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 59:106–125. doi:10.1016/j.plipres.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shaker M, Tabbaa A, Albeldawi M, Alkhouri N (2014) Liver transplantation for nonalcoholic fatty liver disease: new challenges and new opportunities. World J Gastroenterol 20(18):5320–5330. doi:10.3748/wjg.v20.i18.5320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sapp V, Gaffney L, EauClaire SF, Matthews RP (2014) Fructose leads to hepatic steatosis in zebrafish that is reversed by mechanistic target of rapamycin (mTOR) inhibition. Hepatology 60(5):1581–1592. doi:10.1002/hep.27284

    Article  CAS  PubMed  Google Scholar 

  87. Vacaru AM, Di Narzo AF, Howarth DL, Tsedensodnom O, Imrie D, Cinaroglu A et al (2014) Molecularly defined unfolded protein response subclasses have distinct correlations with fatty liver disease in zebrafish. Dis Model Mech 7(7):823–835. doi:10.1242/dmm.014472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Braunbeck T, Gorge G, Storch V, Nagel R (1990) Hepatic steatosis in zebra fish (Brachydanio rerio) induced by long-term exposure to gamma-hexachlorocyclohexane. Ecotoxicol Environ Saf 19(3):355–374

    Article  CAS  PubMed  Google Scholar 

  89. Radosavljevic T, Mladenovic D, Jakovljevic V, Vucvic D, Rasc-Markovic A, Hrncic D et al (2009) Oxidative stress in liver and red blood cells in acute lindane toxicity in rats. Human & experimental toxicology 28(12):747–757. doi:10.1177/0960327109353055

    Article  CAS  Google Scholar 

  90. Amali AA, Rekha RD, Lin CJ, Wang WL, Gong HY, Her GM et al (2006) Thioacetamide induced liver damage in zebrafish embryo as a disease model for steatohepatitis. J Biomed Sci 13(2):225–232. doi:10.1007/s11373-005-9055-5

    Article  CAS  PubMed  Google Scholar 

  91. Hammes TAO, Pedroso GL, Hartmann CR, Escobar TD, Fracasso LB, da Rosa DP et al (2012) The effect of taurine on hepatic steatosis induced by thioacetamide in zebrafish (Danio rerio). Dig Dis Sci 57(3):675–682. doi:10.1007/s10620-011-1931-4

    Article  CAS  PubMed  Google Scholar 

  92. Fai Tse WK, Li JW, Kwan Tse AC, Chan TF, Hin Ho JC, Sun Wu RS et al (2016) Fatty liver disease induced by perfluorooctane sulfonate: novel insight from transcriptome analysis. Chemosphere 159:166–177. doi:10.1016/j.chemosphere.2016.05.060

    Article  PubMed  CAS  Google Scholar 

  93. Cheng J, Lv S, Nie S, Liu J, Tong S, Kang N et al (2016) Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish. Aquat Toxicol 176:45–52. doi:10.1016/j.aquatox.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  94. Lyssimachou A, Santos JG, Andre A, Soares J, Lima D, Guimaraes L et al (2015) The mammalian "Obesogen" Tributyltin targets hepatic triglyceride accumulation and the transcriptional regulation of lipid metabolism in the liver and brain of zebrafish. PLoS One 10(12):e0143911. doi:10.1371/journal.pone.0143911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Driessen M, Vitins AP, Pennings JL, Kienhuis AS, Water B, van der Ven LT (2015) A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen. Toxicol Lett 232(2):403–412. doi:10.1016/j.toxlet.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  96. Martella A, Silvestri C, Maradonna F, Gioacchini G, Allara M, Radaelli G et al (2016) Bisphenol a induces fatty liver by an endocannabinoid-mediated positive feedback loop. Endocrinology 157(5):1751–1763. doi:10.1210/en.2015-1384

    Article  CAS  PubMed  Google Scholar 

  97. Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z et al (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10:21. doi:10.1186/1472-6793-10-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Tainaka T, Shimada Y, Kuroyanagi J, Zang L, Oka T, Nishimura Y et al (2011) Transcriptome analysis of anti-fatty liver action by Campari tomato using a zebrafish diet-induced obesity model. Nutr Metab (Lond) 8:88. doi:10.1186/1743-7075-8-88

    Article  CAS  Google Scholar 

  99. Hiramitsu M, Shimada Y, Kuroyanagi J, Inoue T, Katagiri T, Zang L et al (2014) Eriocitrin ameliorates diet-induced hepatic steatosis with activation of mitochondrial biogenesis. Sci Rep 4:3708. doi:10.1038/srep03708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Dai W, Wang K, Zheng X, Chen X, Zhang W, Zhang Y et al (2015) High fat plus high cholesterol diet lead to hepatic steatosis in zebrafish larvae: a novel model for screening anti-hepatic steatosis drugs. Nutr Metab (Lond) 12:42. doi:10.1186/s12986-015-0036-z

    Article  CAS  Google Scholar 

  101. Shimada Y, Kuninaga S, Ariyoshi M, Zhang B, Shiina Y, Takahashi Y et al (2015) E2F8 promotes hepatic steatosis through FABP3 expression in diet-induced obesity in zebrafish. Nutr Metab (Lond) 12:17. doi:10.1186/s12986-015-0012-7

    Article  CAS  Google Scholar 

  102. DeRossi C, Vacaru A, Rafiq R, Cinaroglu A, Imrie D, Nayar S et al (2016) trappc11 is required for protein glycosylation in zebrafish and humans. Mol Biol Cell 27(8):1220–1234. doi:10.1091/mbc.E15-08-0557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Matthews RP, Lorent K, Manoral-Mobias R, Huang Y, Gong W, Murray IV et al (2009) TNFalpha-dependent hepatic steatosis and liver degeneration caused by mutation of zebrafish S-adenosylhomocysteine hydrolase. Development 136(5):865–875. doi:10.1242/dev.027565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A et al (2011) Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology 54(2):452–462. doi:10.1002/hep.24349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van der Velden YU, Wang L, Zevenhoven J, van Rooijen E, van Lohuizen M, Giles RH et al (2011) The serine-threonine kinase LKB1 is essential for survival under energetic stress in zebrafish. Proc Natl Acad Sci 108(11):4358–4363. doi:10.1073/pnas.1010210108

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hugo SE, Cruz-Garcia L, Karanth S, Anderson RM, Stainier DY, Schlegel A (2012) A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting. Genes Dev 26(3):282–293. doi:10.1101/gad.180968.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gu Q, Yang X, Lin L, Li S, Li Q, Zhong S et al (2014) Genetic ablation of solute carrier family 7a3a leads to hepatic steatosis in zebrafish during fasting. Hepatology 60(6):1929–1941. doi:10.1002/hep.27356

    Article  CAS  PubMed  Google Scholar 

  108. Liu LY, Alexa K, Cortes M, Schatzman-Bone S, Kim AJ, Mukhopadhyay B et al (2016) Cannabinoid receptor signaling regulates liver development and metabolism. Development 143(4):609–622. doi:10.1242/dev.121731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dai Z, Wang H, Jin X, Wang H, He J, Liu M et al (2015) Depletion of suppressor of cytokine signaling-1a causes hepatic steatosis and insulin resistance in zebrafish. Am J Physiol Endocrinol Metab 308(10):E849–E859. doi:10.1152/ajpendo.00540.2014

    Article  PubMed  CAS  Google Scholar 

  110. Shieh YS, Chang YS, Hong JR, Chen LJ, Jou LK, Hsu CC et al (2010) Increase of hepatic fat accumulation by liver specific expression of hepatitis B virus X protein in zebrafish. Biochim Biophys Acta 1801(7):721–730. doi:10.1016/j.bbalip.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  111. Her GM, Hsu CC, Hong JR, Lai CY, Hsu MC, Pang HW et al (2011) Overexpression of gankyrin induces liver steatosis in zebrafish (Danio rerio). Biochim Biophys Acta 1811(9):536–548. doi:10.1016/j.bbalip.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  112. Tsai SM, Liu DW, Wang WP (2013) Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish. Transgenic Res 22(2):301–314. doi:10.1007/s11248-012-9636-9

    Article  CAS  PubMed  Google Scholar 

  113. Her GM, Pai WY, Lai CY, Hsieh YW, Pang HW (2013) Ubiquitous transcription factor YY1 promotes zebrafish liver steatosis and lipotoxicity by inhibiting CHOP-10 expression. Biochim Biophys Acta 1831(6):1037–1051. doi:10.1016/j.bbalip.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  114. Pai WY, Hsu CC, Lai CY, Chang TZ, Tsai YL, Her GM (2013) Cannabinoid receptor 1 promotes hepatic lipid accumulation and lipotoxicity through the induction of SREBP-1c expression in zebrafish. Transgenic Res 22(4):823–838. doi:10.1007/s11248-012-9685-0

    Article  CAS  PubMed  Google Scholar 

  115. Cruz-Garcia L, Schlegel A (2014) Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids. J Lipid Res 55(9):1944–1958. doi:10.1194/jlr.M052845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Scrivens PJ, Noueihed B, Shahrzad N, Hul S, Brunet S, Sacher M (2011) C4orf41 and TTC-15 are mammalian TRAPP components with a role at an early stage in ER-to-Golgi trafficking. Mol Biol Cell 22(12):2083–2093. doi:10.1091/mbc.E10-11-0873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim SH, Wu SY, Baek JI, Choi SY, Su Y, Flynn CR et al (2015) A post-developmental genetic screen for zebrafish models of inherited liver disease. PLoS One 10(5):e0125980. doi:10.1371/journal.pone.0125980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Rashid T, Takebe T, Nakauchi H (2015) Novel strategies for liver therapy using stem cells. Gut 64(1):1–4. doi:10.1136/gutjnl-2014-307480

    Article  PubMed  Google Scholar 

  119. Shiota G, Itaba N (2016) Progress in stem cell-based therapy for liver disease. Hepatol Res. doi:10.1111/hepr.12747

    PubMed  Google Scholar 

  120. Alison MR, Lin WR (2016) Diverse routes to liver regeneration. J Pathol 238(3):371–374. doi:10.1002/path.4667

    Article  PubMed  Google Scholar 

  121. Rutherford A, Chung RT (2008) Acute liver failure: mechanisms of hepatocyte injury and regeneration. Semin Liver Dis 28(2):167–174. doi:10.1055/s-2008-1073116

    Article  CAS  PubMed  Google Scholar 

  122. Sadler KC, Krahn KN, Gaur NA, Ukomadu C (2007) Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 104(5):1570–1575. doi:10.1073/pnas.0610774104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kan NG, Junghans D, Izpisua Belmonte JC (2009) Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB J 23(10):3516–3525. doi:10.1096/fj.09-131730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Goessling W, North TE, Lord AM, Ceol C, Lee S, Weidinger G et al (2008) APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev Biol 320(1):161–174. doi:10.1016/j.ydbio.2008.05.526

    Article  CAS  PubMed  Google Scholar 

  125. Miyajima A, Tanaka M, Itoh T (2014) Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14(5):561–574. doi:10.1016/j.stem.2014.04.010

    Article  CAS  PubMed  Google Scholar 

  126. Malato Y, Naqvi S, Schurmann N, Ng R, Wang B, Zape J et al (2011) Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 121(12):4850–4860. doi:10.1172/JCI59261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schaub JR, Malato Y, Gormond C, Willenbring H (2014) Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep 8(4):933–939. doi:10.1016/j.celrep.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H et al (2014) Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15(3):340–349. doi:10.1016/j.stem.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236(4):1025–1035. doi:10.1002/dvdy.21100

    Article  CAS  PubMed  Google Scholar 

  130. • Choi TY, Ninov N, Stainier DY, Shin D (2014) Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146(3):776–788. doi:10.1053/j.gastro.2013.10.019 This and the two studies listed below established a novel liver regeneration model that allows investigation of the plasticity of liver parenchymal cells during hepatocyte regeneration

    Article  CAS  PubMed  Google Scholar 

  131. • He J, Lu H, Zou Q, Luo L (2014) Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146(3):789–800 e8. doi:10.1053/j.gastro.2013.11.045 This and the two studies listed below established a novel liver regeneration model that allows investigation of the plasticity of liver parenchymal cells during hepatocyte regeneration

  132. • Huang M, Chang A, Choi M, Zhou D, Anania FA, Shin CH (2014) Antagonistic interaction between Wnt and Notch activity modulates the regenerative capacity of a zebrafish fibrotic liver model. Hepatology 60(5):1753–1766. doi:10.1002/hep.27285 This and the two studies listed below established a novel liver regeneration model that allows investigation of the plasticity of liver parenchymal cells during hepatocyte regeneration

  133. Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM et al (2013) Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27(7):719–724. doi:10.1101/gad.207803.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ko S, Choi TY, Russell JO, So J, Monga SP, Shin D (2016) Bromodomain and extraterminal (BET) proteins regulate biliary-driven liver regeneration. J Hepatol 64(2):316–325. doi:10.1016/j.jhep.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  135. Lowes KN, Brennan BA, Yeoh GC, Olynyk JK (1999) Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol 154(2):537–541. doi:10.1016/S0002-9440(10)65299-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Roskams TA, Libbrecht L, Desmet VJ (2003) Progenitor cells in diseased human liver. Semin Liver Dis 23(4):385–396. doi:10.1055/s-2004-815564

    Article  CAS  PubMed  Google Scholar 

  137. Novoa B, Figueras A (2012) Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol 946:253–275. doi:10.1007/978-1-4614-0106-3_15

    Article  CAS  PubMed  Google Scholar 

  138. Cox AG, Saunders DC, Kelsey PB, Jr. Conway AA, Tesmenitsky Y, Marchini JF et al. S-nitrosothiol signaling regulates liver development and improves outcome following toxic liver injury. Cell Rep 2014;6(1):56–69. doi:10.1016/j.celrep.2013.12.007

  139. North TE, Babu IR, Vedder LM, Lord AM, Wishnok JS, Tannenbaum SR et al (2010) PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci U S A 107(40):17315–17320. doi:10.1073/pnas.1008209107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. • Liu LY, Fox CS, North TE, Goessling W (2013) Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development. Dis Model Mech 6(5):1271–1278. doi:10.1242/dmm.011726 This study provides another proof of concept of using zebrafish to evaluate the biological consequences of GWAS variants

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Varshney GK, Pei W, LaFave MC, Idol J, Xu L, Gallardo V et al (2015) High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25(7):1030–1042. doi:10.1101/gr.186379.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grant R00AA020514 and a pilot award from Center for Pediatric Genomics in Cincinnati Children’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyue Yin.

Ethics declarations

Conflict of Interest

Duc-Hung Pham, Changwen Zhang, and Chunyue Yin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving animals were in accordance with the ethical standards of the institute at which the studies were conducted.

Additional information

This article is part of the Topical Collection on Xenopus and Zebrafish Models for Pathobiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, DH., Zhang, C. & Yin, C. Using Zebrafish to Model Liver Diseases-Where Do We Stand?. Curr Pathobiol Rep 5, 207–221 (2017). https://doi.org/10.1007/s40139-017-0141-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0141-y

Keywords

Navigation