Skip to main content

Methods to Study Liver Disease Using Zebrafish Larvae

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

Abstract

Liver disease affects millions of people worldwide, and the high morbidity and mortality is attributed in part to the paucity of treatment options. In many cases, liver injury self-resolves due to the remarkable regenerative capacity of the liver, but in cases when regeneration cannot compensate for the injury, inflammation and fibrosis occur, creating a setting for the emergence of liver cancer. Whole animal models are crucial for deciphering the basic biological underpinnings of liver biology and pathology and, importantly, for developing and testing new treatments for liver disease before it progresses to a terminal state. The cellular components and functions of the zebrafish liver are highly similar to mammals, and zebrafish develop many diseases that are observed in humans, including toxicant-induced liver injury, fatty liver, fibrosis, and cancer. Therefore, the widespread use of zebrafish larvae for studying the mechanisms of these pathologies and for developing potential treatments necessitates the optimization of experimental approaches to assess liver disease in this model. Here, we describe protocols using staining methods, imaging, and gene expression analysis to assess liver injury, fibrosis, and preneoplastic changes in the liver of larval zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asrani SK, Devarbhavi H, Eaton J et al (2019) Burden of liver diseases in the world. J Hepatol 70:151–171

    Article  PubMed  Google Scholar 

  2. Collaborators GBDC (2020) The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol 5:245–266

    Article  Google Scholar 

  3. Di Sessa A, Cirillo G, Guarino S et al (2019) Pediatric non-alcoholic fatty liver disease: current perspectives on diagnosis and management. Pediatric Health Med Ther 10:89–97

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roehlen N, Crouchet E, Baumert TF (2020) Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cell 9

    Google Scholar 

  5. Goessling W, Sadler KC (2015) Zebrafish: an important tool for liver disease research. Gastroenterology 149:1361–1377

    Article  PubMed  Google Scholar 

  6. Cox AG, Goessling W (2015) The lure of zebrafish in liver research: regulation of hepatic growth in development and regeneration. Curr Opin Genet Dev 32:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilkins BJ, Pack M (2013) Zebrafish models of human liver development and disease. Compr Physiol 3:1213–1230

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang S, Miller SR, Ober EA et al (2017) Making it new again: insight into liver development, regeneration, and disease from zebrafish research. Curr Top Dev Biol 124:161–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morrison J, DeRossi C, Alter I et al (2021) Single-cell transcriptomics reveals conserved cell identities and fibrogenic phenotypes in zebrafish and human liver. bioRxiv. https://doi.org/10.1101/2021.08.06.455422

  10. Cheng D, Morsch M, Shami GJ et al (2020) Observation and characterisation of macrophages in zebrafish liver. Micron 132:102851

    Article  CAS  PubMed  Google Scholar 

  11. Wrighton PJ, Oderberg IM, Goessling W (2019) There is something fishy about liver cancer: zebrafish models of hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol 8:347–363

    Article  PubMed  PubMed Central  Google Scholar 

  12. Evason KJ, Francisco MT, Juric V et al (2015) Identification of chemical inhibitors of beta-catenin-driven liver tumorigenesis in zebrafish. PLoS Genet 11:e1005305

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu JW, Yang WY, Tsai SM et al (2013) Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PLoS One 8:e76951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen AT, Emelyanov A, Koh CH et al (2012) An inducible krasV12 transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5:63–72

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Huang X, Zhan H et al (2012) Inducible and repressable oncogene-addicted hepatocellular carcinoma in Tet-on xmrk transgenic zebrafish. J Hepatol 56:419–425

    Article  CAS  PubMed  Google Scholar 

  16. Spitsbergen JM, Tsai HW, Reddy A et al (2000) Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N′-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol Pathol 28:716–725

    Article  CAS  PubMed  Google Scholar 

  17. Mudbhary R, Hoshida Y, Chernyavskaya Y et al (2014) UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25:196–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Passeri MJ, Cinaroglu A, Gao C et al (2009) Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology 49:443–452

    Article  CAS  PubMed  Google Scholar 

  19. Howarth DL, Passeri M, Sadler KC (2011) Drinks like a fish: using zebrafish to understand alcoholic liver disease. Alcohol Clin Exp Res 35:826–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Delaney P, Nair AR, Palmer C et al (2020) Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 409:115307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bambino K, Zhang C, Austin C et al (2018) Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech 11:dmm031575

    PubMed  PubMed Central  Google Scholar 

  22. Carlson P, Van Beneden RJ (2014) Arsenic exposure alters expression of cell cycle and lipid metabolism genes in the liver of adult zebrafish (Danio rerio). Aquat Toxicol 153:66–72

    Article  CAS  PubMed  Google Scholar 

  23. Lam SH, Winata CL, Tong Y et al (2006) Transcriptome kinetics of arsenic-induced adaptive response in zebrafish liver. Physiol Genomics 27:351–361

    Article  CAS  PubMed  Google Scholar 

  24. North TE, Babu IR, Vedder LM et al (2010) PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proc Natl Acad Sci U S A 107:17315–17320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeRossi C, Bambino K, Morrison J et al (2019) Mannose phosphate isomerase and mannose regulate hepatic stellate cell activation and fibrosis in zebrafish and humans. Hepatology 70:2107–2122

    Article  CAS  PubMed  Google Scholar 

  26. Michael C, Martinez-Navarro FJ, de Oliveira S (2021) Analysis of liver microenvironment during early progression of non-alcoholic fatty liver disease-associated hepatocellular carcinoma in zebrafish. J Vis Exp. https://doi.org/10.3791/62457

  27. Yang Q, Salim L, Yan C et al (2019) Rapid analysis of effects of environmental toxicants on tumorigenesis and inflammation using a transgenic zebrafish model for liver cancer. Mar Biotechnol (NY) 21:396–405

    Article  CAS  PubMed  Google Scholar 

  28. Salmi TM, Tan VWT, Cox AG (2019) Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans 47:305–315

    Article  CAS  PubMed  Google Scholar 

  29. Fei F, Wang L, Sun S et al (2019) Transgenic strategies to generate heterogeneous hepatic cancer models in zebrafish. J Mol Cell Biol 11:1021–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kendall GC, Amatruda JF (2016) Zebrafish as a model for the study of solid malignancies. Methods Mol Biol 1451:121–142

    Article  CAS  PubMed  Google Scholar 

  31. Ellis JL, Yin C (2017) Histological analyses of acute alcoholic liver injury in zebrafish. J Vis Exp. https://doi.org/10.3791/55630

    Book  Google Scholar 

  32. Korzh S, Pan X, Garcia-Lecea M et al (2008) Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8:84

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zheng W, Li Z, Nguyen AT et al (2014) Xmrk, kras and myc transgenic zebrafish liver cancer models share molecular signatures with subsets of human hepatocellular carcinoma. PLoS One 9:e91179

    Article  PubMed  PubMed Central  Google Scholar 

  34. Huo X, Li H, Li Z et al (2019) Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. Sci Rep 9:1509

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stuckenholz C, Lu L, Thakur P et al (2009) FACS-assisted microarray profiling implicates novel genes and pathways in zebrafish gastrointestinal tract development. Gastroenterology 137:1321–1332

    Article  CAS  PubMed  Google Scholar 

  36. DeRossi C, Vacaru A, Rafiq R et al (2016) trappc11 is required for protein glycosylation in zebrafish and humans. Mol Biol Cell 27:1220–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yin C, Evason KJ, Maher JJ et al (2012) The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver. Hepatology 56:1958–1970

    Article  CAS  PubMed  Google Scholar 

  38. Yang W, He H, Wang T et al (2021) Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology 74:2774–2790

    Article  CAS  PubMed  Google Scholar 

  39. Yang Q, Yan C, Gong Z (2018) Interaction of hepatic stellate cells with neutrophils and macrophages in the liver following oncogenic kras activation in transgenic zebrafish. Sci Rep 8:8495

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ramdas Nair A, Delaney P, Koomson AA et al (2021) Systematic evaluation of the effects of toxicant exposure on survival in zebrafish embryos and larvae. Curr Protoc 1:e231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Shashi Ranjan for expert fish care and Joshua Morrison for the optimization of the IF protocol. This work is supported by the Al Jalila Foundation (AJF2018098 to KSE), NYUAD Research Enhancement Fund (RE188 to KSE), and R01 DK121154, R01 DK121154-01A1S1 to JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten C. Sadler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Magnani, E., Nair, A.R., McBain, I., Delaney, P., Chu, J., Sadler, K.C. (2024). Methods to Study Liver Disease Using Zebrafish Larvae. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics