Skip to main content

Zebrafish: Model for the Study of Inflammation and the Innate Immune Response to Infectious Diseases

  • Chapter
  • First Online:
Current Topics in Innate Immunity II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 946))

Abstract

The zebrafish (Danio rerio) has been extensively used in biomedical research as a model to study vertebrate development and hematopoiesis and recently, it has been adopted into varied fields including immunology. After fertilization, larvae survive with only the innate immune responses because adaptive immune system is morphologically and functionally mature only after 4–6 weeks postfertilization. This temporal separation provides a suitable system to study the vertebrate innate immune response in vivo, independently from the adaptive immune response. The transparency of early life stages allows a useful real-time visualization. Adult zebrafish which have complete (innate and adaptative) immune systems offer also advantages over other vertebrate infection models: small size, relatively rapid life cycle, ease of breeding, and a growing list of molecular tools for the study of infectious diseases. In this review, we have tried to give some examples of the potential of zebrafish as a valuable model in innate immunity and inflammation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggad, D., Stein, C., Sieger, D., Mazel, M., Boudinot, P., Herbomel, P., Lutfalla, G. and Leptin, M. (2010) In vivo analysis of Ifn-γ1 and Ifn-γ2 signaling in zebrafish. J. Immunol. 185, 6774-6782

    PubMed  CAS  Google Scholar 

  • Arslanova, D., Yang, T., Xu, X., Wong, S.T., Augelli-Szafran, C.E. and Xia, W. (2010) Phenotypic analysis of images of zebrafish treated with Alzheimer’s gamma-secretase inhibitors. BMC Biotechnol. 10, 24

    PubMed  Google Scholar 

  • Balla, K.M., Lugo-Villarino, G., Spitsbergen, J.M., Stachura, D.L., Hu, Y., Bañuelos, K., Romo-Fewell, O., Aroian, R.V. and Traver, D. (2010) Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116, 3944-3954

    PubMed  CAS  Google Scholar 

  • Bates, J.M., Akerlund, J., Mittge, E. and Guillemin, K. (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371-382

    PubMed  CAS  Google Scholar 

  • Bertrand, J.Y., Kim, A.D., Violette, E. P., Stachura, D.L., Cisson, J.L. and Traver, D. (2007) Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 134, 4147-4156

    PubMed  CAS  Google Scholar 

  • Bowman, T.V. and Zon, L.I. (2010) Swimming into the future of drug discovery: in vivo chemical screens in zebrafish. ACS Chem. Biol. 5, 159-161

    PubMed  CAS  Google Scholar 

  • Brugman, S., Liu, K., Lindenbergh-Kortleve, D., Samsom, J.N., Furuta, G.T., Renshaw, S.A., Willemsen, R. and Nieuwenhuis, E.E. (2009) Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota. Gastroenterology 137, 1757-1767

    PubMed  CAS  Google Scholar 

  • Buckley, C.E., Marguerie, A., Roach, A.G., Goldsmith, P., Fleming, A., Alderton, W.K. and Franklin, R.J. (2010) Drug reprofiling using zebrafish identifies novel compounds with potential pro-myelination effects. Neuropharmacology 59, 149-159

    PubMed  CAS  Google Scholar 

  • Carradice, D. and Lieschke, G. J. (2008) Zebrafish in hematology: sushi or science? Blood 111, 3331-3342

    PubMed  CAS  Google Scholar 

  • Chang, M.X. and Nie, P. (2008) RNAi suppression of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signaling pathway and caused increased susceptibility to Flavobacterium columnare. Vet. Immunol. Immunop. 124, 295-301

    CAS  Google Scholar 

  • Chang, M.X., Nie, P. and Wei, L.L. (2007) Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with findings of multiple PGRP homologs in teleost fish. Mol. Immunol. 44, 3005-3023

    PubMed  CAS  Google Scholar 

  • Chao, C.C., Hsu, P.C., Jen, C.F., Chen, I.H., Wang, C.H., Chan, H.C., Tsai, P.W., Tung, K.C., Wang, C.H., Lan, C.Y. and Chuang, Y.J. (2010) Zebrafish as a model host for Candida albicans infection. Infect. Immun. 78, 2512-2521

    PubMed  CAS  Google Scholar 

  • Cheesman, S.E., Neal, J.T., Mittge, E., Seredick, B.M. and Guillemin, K. (2010) Microbes and Health Sackler Colloquium: Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc. Natl. Acad. Sci. USA. Epub ahead of print 

    Google Scholar 

  • Dahm, R. and Geisler, R. (2006) Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar. Biotechnol. 8, 329-345

    PubMed  CAS  Google Scholar 

  • Davidson, A.J. and Zon, L.I. (2004) The ’definitive’ (and ’primitive’) guide to zebrafish hematopoiesis. Oncogene 23, 7233-7246

    PubMed  CAS  Google Scholar 

  • Davis, J.M., Clay, H., Lewis, J.L., Ghori, N., Herbomel, P. and Ramakrishnan, L. (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693-702

    PubMed  CAS  Google Scholar 

  • de Jong, J.L. and Zon, L.I. (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu. Rev. Genet. 39, 481-501

    PubMed  CAS  Google Scholar 

  • Deiters, A. and Yoder, J.A. (2006) Conditional transgene and gene targeting methodologies in zebrafish. Zebrafish 3, 415-429 

    PubMed  CAS  Google Scholar 

  • Dios, S., Romero, A., Chamorro, R., Figueras, A. and Novoa, B. (2010) Effect of the temperature during antiviral immune response ontogeny in teleosts. Fish Shellfish Immunol. 29, 1019-1027 

    PubMed  CAS  Google Scholar 

  • Dobrovolskaia, M.A., Medvedev, A.E., Thomas, K.E., Cuesta, N., Toshchakov, V., Ren, T., Cody, M.J., Michalek, S.M., Rice, N.R. and Vogel, S.N. (2003) Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR "homotolerance" versus "heterotolerance" on NF-kappa B signaling pathway components. J. Immunol. 170, 508-519

    PubMed  CAS  Google Scholar 

  • Dobson, J.T., Seibert, J., Teh, E.M., Da’as, S., Fraser, R.B., Paw, B.H., Lin, T.J. and Berman, J.N. (2008) Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination. Blood 112, 2969-2972

    PubMed  CAS  Google Scholar 

  • Dooley, K. and Zon, L.I. (2000) Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 10, 252-256

    PubMed  CAS  Google Scholar 

  • Driever, W. and Fishman, M.C. (1996) The zebrafish: heritable disorders in transparent embryos. J. Clin. Invest. 97, 1788-1794

    PubMed  CAS  Google Scholar 

  • Du Pasquier, L. (2000) The phylogenetic origin of antigen-specific receptors. Curr. Top. Microbiol. Immunol. 248, 160-185

    PubMed  CAS  Google Scholar 

  • Dzhagalov, I., St John, A. and He, Y. (2007) The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood 109, 1620-1626

    PubMed  CAS  Google Scholar 

  • Ellett, F., Pase, L., Hayman, J.W., Andrianopoulos, A. and Lieschke, G.J. (2010) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. Epub ahead of print

    Google Scholar 

  • Fleming, A., Jankowski, J. and Goldsmith, P. (2010) In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study. Inflamm. Bowel Dis. 16, 1162-1172

    PubMed  Google Scholar 

  • Flores, M.V., Crawford, K.C., Pullin, L.M., Hall, C.J., Crosier, K.E. and Crosier, P.S. (2010) Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem. Biophys. Res. Commun. 400, 164-168

    PubMed  CAS  Google Scholar 

  • Flores, M.V., Hall, C.J., Davidson, A.J., Singh, P.P., Mahagaonkar, A.A., Zon, L.I., Crosier, K.E. and Crosier, P.S. (2008) Intestinal differentiation in zebrafish requires Cdx1b, a functional equivalent of mammalian Cdx2. Gastroenterology 135, 1665-1675

    PubMed  CAS  Google Scholar 

  • Friedrichs, F., Zugck, C., Rauch, G.J., Ivandic, B., Weichenhan, D., Müller-Bardorff, M., Meder, M., Eddine El Mokhtari, N., Regitz-Zagrosek, V., Hetzer, R., Schäfer, A., Schreiber, S., Chen, J., Neuhaus, I., Ji, R., Siemers, N.O., Frey, N., Rottbauer, W., Katus, H.A. and Stoll, M. (2009) HBEGF, SRA1, and IK: Three cosegregating genes as determinants of cardiomyopathy. Genome Res. 19, 395-403

    PubMed  CAS  Google Scholar 

  • Hall, C., Flores, M.V., Storm, T., Crosier, K. and Crosier, P. (2007) The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev. Biol. 7, 42

    Google Scholar 

  • Hama, K., Provost, E., Baranowski, T.C., Rubinstein, A.L., Anderson, J.L., Leach, S. D. and Farber, S.A. (2008) In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G445-G453

    PubMed  Google Scholar 

  • Haslett, C. (1999) Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am. J. Respir. Crit. Care Med. 160, S5-11

    PubMed  CAS  Google Scholar 

  • Hegedus, Z., Zakrzewska, A., Agoston, V.C., Ordas, A., Rácz, P., Mink, M., Spaink, H.P. and Meijer, A.H.. (2009) Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol. Immunol. 46, 2918-2930

    PubMed  CAS  Google Scholar 

  • Herbomel, P., Thisse, B. and Thisse, C. (1999) Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development, 126, 3735-3745

    PubMed  CAS  Google Scholar 

  • Herbomel, P., Thisse, B. and Thisse, C. (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274-288

    PubMed  CAS  Google Scholar 

  • Hortopan, G.A., Dinday, M.T. and Baraban, S.C. (2010) Zebrafish as a model for studying genetic aspects of epilepsy. Dis. Model. Mech. 3, 144-148

    PubMed  CAS  Google Scholar 

  • Hsieh, J., Pan, C. and Chen, J. (2010) Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol. 29, 430-439

    PubMed  CAS  Google Scholar 

  • Jackson, A.N., McLure, C.A., Dawkins, R.L. and Keating, P.J. (2007) Mannose binding lectin (MBL) copy number polymorphism in Zebrafish (D. rerio) and identification of haplotypes resistant to L. anguillarum. Immunogenetics 59, 861-872

    PubMed  CAS  Google Scholar 

  • Jault, C., Pichon, L. and Chluba, J. (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol. Immunol. 40, 759-771

    PubMed  CAS  Google Scholar 

  • Jima, D.D., Shah, R.N., Orcutt, T.M., Joshi, D., Law, J.M., Litman, G.W., Trede, N.S. and Yoder, J.A. (2009) Enhanced transcription of complement and coagulation genes in the absence of adaptive immunity. Mol. Immunol. 46, 1505-1516

    PubMed  CAS  Google Scholar 

  • Kanther, M. and Rawls, J.F. (2010) Host-microbe interactions in the developing zebrafish. Curr. Opin. Immunol. 22, 10-19

    PubMed  CAS  Google Scholar 

  • Kaser, A., Zeissig, S. and Blumberg, R.S. (2010) Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573-621

    PubMed  CAS  Google Scholar 

  • Kizy, A.E. and Neely, M.N. (2009) First Streptococcus pyogenes signature-tagged mutagenesis screen identifies novel virulence determinants. Infect. Immun. 77, 1854-1865

    PubMed  CAS  Google Scholar 

  • Knapik, E.W. (2000) ENU mutagenesis in zebrafish–from genes to complex diseases. Mamm Genome 11, 511-519

    Google Scholar 

  • LaPatra, S.E., Barone, L., Jones, G.R. and Zon, L.I. (2000) Effects of infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus infection on hematopoietic precursors of the zebrafish. Blood Cells Mol. Dis. 26, 445-452

    PubMed  CAS  Google Scholar 

  • Lam, S.H., Chua, H.L., Gong, Z., Lam, T.J. and Sin, Y.M. (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev. Comp. Immunol. 28, 9-28

    PubMed  CAS  Google Scholar 

  • Langenau, D.M. and Zon, L.I. (2005) The zebrafish: a new model of T-cell and thymic development. Nat. Rev. Immunol. 5, 307-317

    PubMed  CAS  Google Scholar 

  • Le Guyader, D., Redd, M.J., Colucci-Guyon, E., Murayama, E., Kissa, K., Briolat, V., Mordelet, E., Zapata, A., Shinomiya, H., and Herbomel, P. (2008) Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111, 132-141

    PubMed  CAS  Google Scholar 

  • Lepiller, S., Laurens, V., Bouchot, A., Herbomel, P., Solary, E., Chluba, J. (2007) Imaging of nitric oxide in a living vertebrate using a diamino-fluorescein probe. Free Radic. Biol. Med. 43, 619-627

    PubMed  CAS  Google Scholar 

  • Levraud, J., Colucci-Guyon, E., Redd, M.J., Lutfalla, G. and Herbomel, P. (2008) In vivo analysis of zebrafish innate immunity. Methods Mol. Biol. 415, 337-363

    PubMed  CAS  Google Scholar 

  • Li, X., Wang, S., Qi, J., Echtenkamp, S.F., Chatterjee, R., Wang, M., Boons, G.J., Dziarski, R. and Gupta, D. (2007) Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections. Immunity 27, 518-529

    PubMed  Google Scholar 

  • Lieschke, G.J. and Currie, P.D. (2007) Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353-367

    PubMed  CAS  Google Scholar 

  • Lieschke, G.J., Oates, A.C., Crowhurst, M.O., Ward, A.C. and Layton, J.E. (2001) Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 98, 3087-3096

    PubMed  CAS  Google Scholar 

  • Lieschke, G.J., Oates, A.C., Paw, B.H., Thompson, M.A., Hall, N.E., Ward, A.C., Ho, R.K., Zon, L.I. and Layton, J.E. (2002) Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. Dev. Biol. 246(2), 274-295

    PubMed  CAS  Google Scholar 

  • Lin, B., Chen, S., Cao, Z., Lin, Y., Mo, D., Zhang, H., Gu, J., Dong, M., Liu, Z. and Xu, A. (2007) Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: striking similarities and obvious differences with mammals. Mol. Immunol. 44, 295-301

    PubMed  CAS  Google Scholar 

  • Liu, F. and Wen, Z. (2002) Cloning and expression pattern of the lysozyme C gene in zebrafish. Mech. Dev. 113, 69-72

    PubMed  CAS  Google Scholar 

  • Locksley, R.M., Killeen, N. and Lenardo, M.J. (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501

    PubMed  CAS  Google Scholar 

  • López-Muñoz, A., Roca, F.J., Sepulcre, M.P., Meseguer, J. and Mulero, V. (2010) Zebrafish larvae are unable to mount a protective antiviral response against waterborne infection by spring viremia of carp virus. Dev. Comp. Immunol. 34, 546-552

    PubMed  Google Scholar 

  • Lu, M., Chao, Y., Guo, T., Santi, N., Evensen, O., Kasani, S.K., Hong, J.R. and Wu, J.L. (2008) The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol. Immunol. 45, 1146-1152

    PubMed  CAS  Google Scholar 

  • Maisch, B., Richter, A., Sandmöller, A., Portig, I. and Pankuweit, S. (2005) Inflammatory dilated cardiomyopathy (DCMI). Herz 30, 535-544

    PubMed  Google Scholar 

  • Martin, J.S. and Renshaw, S.A. (2009) Using in vivo zebrafish models to understand the biochemical basis of neutrophilic respiratory disease. Biochem. Soc. Trans. 37, 830-837

    PubMed  CAS  Google Scholar 

  • Mathias, J.R., Dodd, M.E., Walters, K.B., Rhodes, J., Kanki, J.P., Look, A.T. and Huttenlocher, A. (2007) Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J. Cell Sci. 120, 3372-3383

    PubMed  CAS  Google Scholar 

  • Mathias, J.R., Dodd, M.E., Walters, K.B., Yoo, S.K., Ranheim, E.A. and Huttenlocher, A. (2009) Characterization of zebrafish larval inflammatory macrophages. Dev. Comp. Immunol. 33, 1212-1217

    PubMed  CAS  Google Scholar 

  • Mathias, J.R., Perrin, B.J., Liu, T., Kanki, J., Look, A.T. and Huttenlocher, A. (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281-1288

    PubMed  CAS  Google Scholar 

  • Meijer, A.H., Gabby Krens, S.F., Medina Rodriguez, I.A., He, S., Bitter, W., Ewa Snaar-Jagalska, B. and Spaink, H.P. (2004) Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol. Immunol. 40, 773-783

    PubMed  CAS  Google Scholar 

  • Meijer, A.H., Van Der Sar, A.M., Cunha, C., Lamers, G.E., Laplante, M.A., Kikuta, H., Bitter, W., Becker, T.S. and Spaink, H.P. (2008) Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. Dev. Comp. Immunol. 32, 36-49

    PubMed  CAS  Google Scholar 

  • Moon, H., Jacobson, E.M., Khersonsky, S.M., Luzung, M.R., Walsh, D.P., Xiong, W., Lee, J.W., Parikh, P.B., Lam, J.C., Kang, T.W., Rosania, G.R., Schier, A.F. and Chang, Y.T. (2002) A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening. J. Am. Chem. Soc. 124, 11608-11609

    PubMed  CAS  Google Scholar 

  • Neely, M.N., Pfeifer, J.D. and Caparon, M. (2002) Streptococcus-zebrafish model of bacterial pathogenesis. Infect. Immun. 70, 3904-3914

    PubMed  CAS  Google Scholar 

  • Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J., White, S.J., Shin, J., Appel, B., Dong, P.D., Stainier, D.Y. and Heath, J.K. (2005) Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev. Biol. 286, 114-135

    PubMed  CAS  Google Scholar 

  • Novoa, B., Bowman, T.V., Zon, L. and Figueras, A. (2009) LPS response and tolerance in the zebrafish (Danio rerio). Fish Shellfish Immunol. 26, 326-331

    PubMed  CAS  Google Scholar 

  • Novoa, B., Romero, A., Mulero, V., Rodríguez, I., Fernández, I. and Figueras, A. (2006) Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine 24, 5806-5816

    CAS  Google Scholar 

  • Oehlers, S.H., Flores, M.V., Chen, T., Hall, C.J., Crosier, K.E. and Crosier, P.S. (2010a) Topographical distribution of antimicrobial genes in the zebrafish intestine. Dev. Comp. Immunol. doi: 10.1016/j.dci.2010.11.008

    Google Scholar 

  • Oehlers, S.H., Flores, M. V., Hall, C.J., O’Toole, R., Swift, S., Crosier, K.E. and Crosier, P.S. (2010b) Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Dev. Comp. Immunol. 34, 352-359

    CAS  Google Scholar 

  • Ordas, A., Hegedus, Z., Henkel, C.V., Stockhammer, O.W., Butler, D., Jansen, H.J., Racz, P., Mink, M., Spaink, H.P. and Meijer, A.H (2010) Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Fish Shellfish Immunol. doi: 10.1016/j.fsi.2010.08.022

    Google Scholar 

  • O’Toole, R., Von Hofsten, J., Rosqvist, R., Olsson, P. and Wolf-Watz, H. (2004) Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microb. Pathog. 37, 41-46

    Google Scholar 

  • Paik, E.J., de Jong, J.L., Pugach, E., Opara, P. and Zon, L.I. (2010) A chemical genetic screen in zebrafish for pathways interacting with cdx4 in primitive hematopoiesis. Zebrafish 7, 61-68

    PubMed  CAS  Google Scholar 

  • Patton, E.E. and Zon, L.I. (2001) The art and design of genetic screens: zebrafish. Nat. Rev. Genet. 2, 956-66

    PubMed  CAS  Google Scholar 

  • Peng, K., Pan, C., Chou, H. and Chen, J. (2010) Using an improved Tol2 transposon system to produce transgenic zebrafish with epinecidin-1 which enhanced resistance to bacterial infection. Fish Shellfish Immunol 28, 905-917

    PubMed  CAS  Google Scholar 

  • Petrie-Hanson, L., Hohn, C. and Hanson, L. (2009) Characterization of rag1 mutant zebrafish leukocytes. BMC Immunol. 10, 8

    PubMed  Google Scholar 

  • Pham, L.N., Kanther, M., Semova, I. and Rawls, J.F. (2008) Methods for generating and colonizing gnotobiotic zebrafish. Nat. protoc. 3, 1862-1875

    PubMed  CAS  Google Scholar 

  • Phelps, H.A., Runft, D.L. and Neely, M.N. (2009) Adult zebrafish model of streptococcal infection. Curr. Protoc. Microbiol. Chapter 9, Unit 9D.1

    Google Scholar 

  • Poorten, T.J. and Kuhn, R.E. (2009) Maternal transfer of antibodies to eggs in Xenopus laevis. Dev. Comp. Immunol. 33, 171-175

    PubMed  CAS  Google Scholar 

  • Power, M.R., Peng, Y., Maydanski, E., Marshall, J.S. and Lin, T. (2004) The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J. Biol. Chem. 279, 49315-49322

    PubMed  CAS  Google Scholar 

  • Purcell, M.K., Smith, K.D., Hood, L., Winton, J.R. and Roach, J.C. (2006) Conservation of Toll-Like Receptor Signaling Pathways in Teleost Fish. Comp. Biochem. Physiol. Part D 1, 77-88

    Google Scholar 

  • Rawls, J.F., Mahowald, M.A., Goodman, A.L., Trent, C.M. and Gordon, J.I. (2007) In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut. Proc. Natl. Acad. Sci. USA. 104, 7622-7627

    PubMed  CAS  Google Scholar 

  • Rawls, J.F., Samuel, B.S. and Gordon, J.I. (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA. 101, 4596-4601

    PubMed  CAS  Google Scholar 

  • Redd, M.J., Kelly, G., Dunn, G., Way, M. and Martin, P. (2006) Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell. Motil. Cytoskeleton. 63, 415-422

    PubMed  CAS  Google Scholar 

  • Renshaw, S.A., Loynes, C.A., Elworthy, S., Ingham, P.W. and Whyte, M.K. (2007) Modeling inflammation in the zebrafish: how a fish can help us understand lung disease. Exp. Lung. Res. 33, 549-554

    PubMed  CAS  Google Scholar 

  • Renshaw, S.A., Loynes, C.A., Trushell, D.M., Elworthy, S., Ingham, P.W. and Whyte, M.K. (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108, 3976-3978

    PubMed  CAS  Google Scholar 

  • Rodríguez, I., Novoa, B. and Figueras, A. (2008) Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish Shellfish Immunol. 25, 239-249

    PubMed  Google Scholar 

  • Sanders, G.E., Batts, W.N. and Winton, J.R. (2003) Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comp. Med. 53, 514-521

    PubMed  CAS  Google Scholar 

  • Schoonheim, P.J., Chatzopoulou, A. and Schaaf, M.J. (2010) The zebrafish as an in vivo model system for glucocorticoid resistance. Steroids 75, 918-925

    PubMed  CAS  Google Scholar 

  • Sepulcre, M.P., Alcaraz-Pérez, F., López-Muñoz, A., Roca, F.J., Meseguer, J., Cayuela, M. L. and Mulero, V. (2009) Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-kappaB activation. J. Immunol. 182, 1836-1845

    PubMed  CAS  Google Scholar 

  • Sieger, D., Stein, C., Neifer, D., Van Der Sar, A.M. and Leptin, M. (2009) The role of gamma interferon in innate immunity in the zebrafish embryo. Dis. Model. Mech. 2, 571-581

    PubMed  CAS  Google Scholar 

  • Singer, J.T., Phennicie, R.T., Sullivan, M.J., Porter, L.A., Shaffer, V.J. and Kim, C.H. (2010) Broad-host-range Plasmids for Red Fluorescent Protein Labeling of Gram-negative Bacteria for Use in the Zebrafish Model System. Appl. Environ. Microbiol. 76, 3467-3474

    PubMed  CAS  Google Scholar 

  • Solnica-Krezel, L., Schier, A.F. and Driever, W. (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136, 1401-1420

    PubMed  CAS  Google Scholar 

  • Stein, C., Caccamo, M., Laird, G. and Leptin, M. (2007) Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. Genome Biol. 8, R251

    PubMed  Google Scholar 

  • Stern, H.M. and Zon, L.I. (2003) Cancer genetics and drug discovery in the zebrafish. Nat. Rev. Cancer 3, 533-539

    PubMed  CAS  Google Scholar 

  • Stockhammer, O.W., Zakrzewska, A., Hegedûs, Z., Spaink, H.P. and Meijer, A.H. (2009) Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J. Immunol. 182, 5641-5653

    PubMed  CAS  Google Scholar 

  • Streisinger, G., Walker, C., Dower, N., Knauber, D. and Singer, F. (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291, 293-296

    PubMed  CAS  Google Scholar 

  • Su, F., Juarez, M.A., Cooke, C.L., Lapointe, L., Shavit, J.A., Yamaoka, J.S. and Lyons, S.E. (2007) Differential regulation of primitive myelopoiesis in the zebrafish by Spi-1/Pu.1 and C/ebp1. Zebrafish 4, 187-199

    PubMed  CAS  Google Scholar 

  • Sullivan, C. and Kim, C. H. (2008) Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol. 25, 341-50

    PubMed  CAS  Google Scholar 

  • Sullivan, C., Charette, J., Catchen, J., Lage, C.R., Giasson, G., Postlethwait, J.H., Millard, P.J. and Kim, C.H. (2009) The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. J. Immunol. 183, 5896-5908

    PubMed  CAS  Google Scholar 

  • Sun, G., Li, H., Wang, Y., Zhang, B. and Zhang, S. (2010) Zebrafish complement factor H and its related genes: identification, evolution, and expression. Funct. Integr. Genomics 10, 577-587

    PubMed  CAS  Google Scholar 

  • Swaim, L.E., Connolly, L.E., Volkman, H.E., Humbert, O., Born, D.E. and Ramakrishnan, L. (2006) Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect. Immun. 74, 6108-6117

    PubMed  CAS  Google Scholar 

  • Takeda, N. (2003) Cardiomyopathy: molecular and immunological aspects (review). Int. J. Mol. Med. 11, 13-16

    PubMed  CAS  Google Scholar 

  • Towbin, J.A. and Bowles, N.E. (2006) Dilated cardiomyopathy: a tale of cytoskeletal proteins and beyond. J. Cardiovasc. Electr. 17, 919-926

    Google Scholar 

  • Traver, D., Herbomel, P., Patton, E.E., Murphey, R.D., Yoder, J.A., Litman, G.W., Catic, A., Amemiya, C.T., Zon, L.I. and Trede, N.S. (2003) The zebrafish as a model organism to study development of the immune system. Adv. Immunol. 81, 253-330

    PubMed  Google Scholar 

  • Trede, N.S. and Zon, L.I. (1998) Development of T-cells during fish embryogenesis. Dev. Comp. Immunol. 22, 253-263

    PubMed  CAS  Google Scholar 

  • Trede, N.S., Langenau, D.M., Traver, D., Look, A.T. and Zon, L.I. (2004) The use of zebrafish to understand immunity. Immunity 20, 367-379

    PubMed  CAS  Google Scholar 

  • Trede, N.S., Zapata, A. and Zon, L.I. (2001) Fishing for lymphoid genes. Trends Immunol. 22, 302-307

    PubMed  CAS  Google Scholar 

  • Triantafilou, M., Lepper, P.M., Briault, C.D., Ahmed, M.A.E. and Dmochowski, J.M. (2008) Chemokine receptor 4 (CXCR4) is part of the lipopolysaccharide sensing apparatus. Eur. J. Immunol. 38, 192–203

    PubMed  CAS  Google Scholar 

  • Van Der Sar, A.M., Appelmelk, B.J., Vandenbroucke-Grauls, C.M. and Bitter, W. (2004) A star with stripes: zebrafish as an infection model. Trends Microbiol. 12, 451-457

    PubMed  CAS  Google Scholar 

  • Van Der Sar, A.M., Musters, R.J., Van Eeden, F.J., Appelmelk, B.J., Vandenbroucke-Grauls, C.M. and Bitter,W. (2003) Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell. Immunol. 5, 601-611

    CAS  Google Scholar 

  • Van Der Sar, A.M., Spaink, H.P., Zakrzewska, A., Bitter, W. and Meijer, A.H. (2009) Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Mol. Immunol. 46, 2317-2332

    PubMed  CAS  Google Scholar 

  • Venkatesh, B. (2003) Evolution and diversity of fish genomes. Curr. Opin. Genet. Dev. 13, 588-592

    PubMed  CAS  Google Scholar 

  • Vojtech, L.N., Sanders, G.E., Conway, C., Ostland,V. and Hansen, J.D. (2009) Host immune response and acute disease in a zebrafish model of Francisella pathogenesis. Infect. Immun. 77, 914-925

    CAS  Google Scholar 

  • Volff, J. (2005) Genome evolution and biodiversity in teleost fish. Heredity 94, 280-294

    PubMed  CAS  Google Scholar 

  • Walters, K.B., Dodd, M.E., Mathias, J.R., Gallagher, A.J., Bennin, D.A., Rhodes, J., Kanki, J.P., Look, A.T., Grinblat, Y. and Huttenlocher, A. (2009) Muscle degeneration and leukocyte infiltration caused by mutation of zebrafish Fad24. Dev. Dyn. 238, 86-99

    PubMed  CAS  Google Scholar 

  • Walters, K.B., Green, J.M., Surfus, J.C., Yoo, S.K. and Huttenlocher, A. (2010) Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood 116, 2803-2811

    PubMed  CAS  Google Scholar 

  • Wang, C., Tao, W., Wang, Y., Bikow, J., Lu, B., Keating, A., Verma, S., Parker, T.G., Han, R. and Wen, X.Y. (2010) Rosuvastatin, identified from a zebrafish chemical genetic screen for antiangiogenic compounds, suppresses the growth of prostate cancer. Eur. Urol. 58, 418-426

    PubMed  CAS  Google Scholar 

  • Wang, Z., Zhang, S., Tong, Z., Li, L., and Wang, G. (2009) Maternal transfer and protective role of the alternative complement components in zebrafish Danio rerio. PLoS ONE 4, e4498

    PubMed  Google Scholar 

  • Wang, Z., Zhang, S., Wang, G., and An, Y. (2008a) Complement activity in the egg cytosol of zebrafish Danio rerio: evidence for the defense role of maternal complement components. PLoS ONE 3, e1463

    Google Scholar 

  • Wang, Z., Zhang, S., and Wang, G. (2008b) Response of complement expression to challenge with lipopolysaccharide in embryos/larvae of zebrafish Danio rerio: acquisition of immunocompetent complement. Fish Shellfish Immunol. 25, 264-270

    CAS  Google Scholar 

  • West, M.A. and Heagy, W. (2002) Endotoxin tolerance: A review. Crit. Care Med. 30, S64-S73

    CAS  Google Scholar 

  • Wienholds, E., Schulte-Merker, S., Walderich, B. and Plasterk, R.H. (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99-102

    PubMed  CAS  Google Scholar 

  • Willett, C.E., Cortes, A., Zuasti, A. and Zapata, A.G. (1999) Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev. Dyn. 214, 323-336

    PubMed  CAS  Google Scholar 

  • Willett, C. E., Zapata, A. G., Hopkins, N. and Steiner, L.A. (1997) Expression of zebrafish rag genes during early development identifies the thymus. Dev. Biol. 182, 331-341

    PubMed  CAS  Google Scholar 

  • Wu, Z., Zhang, W., Lu, Y. and Lu, C. (2010) Transcriptome profiling of zebrafish infected with Streptococcus suis. Microb. Pathog. 48, 178-187

    PubMed  CAS  Google Scholar 

  • Xu, Z., Li, Y., Xiang, Q., Pei, Z., Liu, X., Lu, B., et al. (2010) Design and synthesis of novel xyloketal derivatives and their vasorelaxing activities in rat thoracic aorta and angiogenic activities in zebrafish angiogenesis Screen. J. Med. Chem. 53, 4642-4653

    PubMed  CAS  Google Scholar 

  • Yazawa, R., Hirono, I. and Aoki, T. (2006) Transgenic zebrafish expressing chicken lysozyme show resistance against bacterial diseases. Transgenic Res. 15, 385-391

    PubMed  CAS  Google Scholar 

  • Yoder, J.A. (2009) Form, function and phylogenetics of NITRs in bony fish. Dev. Comp. Immunol. 33, 135-144

    CAS  Google Scholar 

  • Yoder, J.A., Mueller, M.G., Wei, S., Corliss, B.C., Prather, D. M., Willis, T., Litman R.T., Djeu J.Y. and Litman G.W. (2001) Immune-type receptor genes in zebrafish share genetic and functional properties with genes encoded by the mammalian leukocyte receptor cluster. Proc. Natl. Acad. Sci. USA 98, 6771-6776

    PubMed  CAS  Google Scholar 

  • Yoder, J.A., Nielsen, M.E., Amemiya, C.T., and Litman, G.W. (2002) Zebrafish as an immunological model system. Microb. Infect. 4, 1469-1478

    CAS  Google Scholar 

  • Yoo, S.K., Deng, Q., Cavnar, P.J., Wu, Y. I., Hahn, K.M. and Huttenlocher, A. (2010) Differential regulation of protrusion and polarity by PI3 K during neutrophil motility in live zebrafish. Dev. Cell 18, 226-236

    PubMed  CAS  Google Scholar 

  • Zapata, A., Diez, B., Cejalvo, T., Gutiérrez-de Frías, C. and Cortés, A. (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol. 20, 126-136

    PubMed  CAS  Google Scholar 

  • Zon, L.I. and Peterson, R.T. (2005) In vivo drug discovery in the zebrafish. Nature Rev. Drug Discov. 4, 35-344

    CAS  Google Scholar 

  • Zou, J., Mercier, C., Koussounadis, A. and Secombes, C. (2007) Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol. 44, 638-647

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank the funding from the project CSD2007-00002 “Aquagenomics” of the program Consolider-Ingenio 2010 from the Spanish Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Figueras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Novoa, B., Figueras, A. (2012). Zebrafish: Model for the Study of Inflammation and the Innate Immune Response to Infectious Diseases. In: Lambris, J., Hajishengallis, G. (eds) Current Topics in Innate Immunity II. Advances in Experimental Medicine and Biology, vol 946. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0106-3_15

Download citation

Publish with us

Policies and ethics