Skip to main content
Log in

Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO-NPs) are being widely used in numerous industrial and commercial applications. This study was designed to investigate the possible mechanisms of bioaccumulation, oxidative stress, histopathological alterations and genotoxicity induced by ZnO-NPs to tilapia (Oreochromis mossambicus). The study showed maximum Zn accumulation of 3.0643 mg/kg (p < 0.05) in liver at highest concentration of 1.5 mg/L in T3. ZnO-NPs induced oxidative stress as indicated by the significantly increased LPO level in gills as compared to liver (p < 0.05). The increased lipid peroxidase (LPO) and superoxide dismutase (SOD) levels were observed in gills than liver. Similar results were observed for catalase (CAT) and glutathione (GSH) in gills. In case of histological alterations, gill oedema and hyperplasia, fusion of gill lamellae and thickening of primary and secondary gill lamellae were observed. In liver, necrosis and apoptosis with condensed nuclear bodies and pyknotic nuclei were observed. The genotoxic potential was investigated by evaluating DNA strands break using alkaline comet assay, and significant DNA damage was observed in the erythrocytes when exposed for ZnO-NPs. The % tail DNA was increased with the increasing concentration of ZnO-NPs, and similar pattern was shown in olive tail movement. Overall, we conclude that the ZnO-NPs have the potential to accumulate in the soft tissues, causing respiratory distress such as oxidative stress, induction of antioxidant defence mechanism by raising glutathione (GSH), organ pathology and genotoxicity. These results suggest the potential ecotoxicological effects of nanoparticles in understanding their uptake and effects on aquatic biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adel Abdel-Khalek A, Kadry M, Hamed A, Marie MA (2015) Ecotoxicological impacts of zinc metal in comparison to its nanoparticles in Nile tilapia; Oreochromis niloticus. J Basic Appl Zool 72:113–125

    Article  CAS  Google Scholar 

  • Ali D, Alarifi S, Kumar S, Ahamed M, Siddiqui MA (2012) Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquat Toxicol 124:83–90

    Article  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC

    Google Scholar 

  • Asagba SO, Eriyamremu GE, Igberaese ME (2008) Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol Biochem 34(1):61–69

    Article  CAS  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Klüttgen B, Christensen FM (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health—lessons learned from four case studies. Environ Int 37(6):1143–1156

    Article  CAS  Google Scholar 

  • Ates M, Arslan Z, Demir V, Daniels J, Farah IO (2015) Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environ Toxicol 30(1):119–128

    Article  CAS  Google Scholar 

  • Ballesteros ML, Wunderlin DA, Bistoni MA (2009) Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicol Environ Saf 72(1):199–205

    Article  CAS  Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22(1):25–34

    Article  Google Scholar 

  • Blaise C, Gagné F, Férard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23(5):591–598

    Article  CAS  Google Scholar 

  • Bressler K, Ron B (2004) Effect of anesthetics on stress and the innate immune system of gilthead bream (Sparus aurata). Israeli J Aquacult 56:5–13

    Google Scholar 

  • Bucher F, Hofer R (1993) The effects of treated domestic sewage on three organs (gills, kidney, liver) of brown trout (Salmo trutta). Water Res 27(2):255–261

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Cao L, Huang W, Shan X, Ye Z, Dou S (2012) Tissue-specific accumulation of cadmium and its effects on antioxidative responses in Japanese flounder juveniles. Environ Toxicol Pharmacol 33(1):16–25

    Article  CAS  Google Scholar 

  • Chaubey RC (2005) Computerized image analysis software for the comet assay. In Molecular toxicology protocols. Humana Press, pp 97–106

  • Claiborne A (1985) Catalase activity. In: Greenland RA (ed) CRC handbook of methods in oxygen radical research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  • Dorval J, Leblond VS, Hontela A (2003) Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide. Aquat Toxicol 63(3):229–241

    Article  CAS  Google Scholar 

  • Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O’neill O, Seaton A (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. R Soc R Acad Eng Rep 61:e64

    Google Scholar 

  • Fan W, Li Q, Yang X, Zhang L (2013) Zn subcellular distribution in liver of goldfish (Carassius auratus) with exposure to zinc oxide nanoparticles and mechanism of hepatic detoxification. PLoS ONE 8(11):e78123

    Article  CAS  Google Scholar 

  • Farré M, Gajda-Schrantz K, Kantiani L, Barceló D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393(1):81–95

    Article  Google Scholar 

  • Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, Kleinsasser N (2011) Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro 25(3):657–663

    Article  CAS  Google Scholar 

  • Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110

    Article  CAS  Google Scholar 

  • Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60

    Article  CAS  Google Scholar 

  • Humason GL (1979) Animal tissue technique, 4th edn. W.H.Freeman and Company, San Francisco, p 61

    Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione NA, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11(3):151–169

    Article  CAS  Google Scholar 

  • Kaya H, Akbulut M (2015) Effects of waterborne lead exposure in mozambique tilapia: oxidative stress, osmoregulatory responses, and tissue accumulation. J Aquat Anim Health 27(2):77–87

    Article  CAS  Google Scholar 

  • Kaya H, Akbulut M, Çelik EŞ, Yılmaz S (2013) Impacts of sublethal lead exposure on the hemato-immunological parameters in tilapia (Oreochromis mossambicus). Toxicol Environ Chem 95(9):1554–1564

    Article  CAS  Google Scholar 

  • Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z (2015) Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environ Toxicol Pharmacol 40(3):936–947

    Article  CAS  Google Scholar 

  • Kaya H, Aydın F, Gürkan M, Yılmaz S, Ates M, Demir V, Arslan Z (2016a) A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 144:571–582

    Article  CAS  Google Scholar 

  • Kaya H, Duysak M, Akbulut M, Yılmaz S, Gürkan M, Arslan Z, Ateş M (2016b) Effects of subchronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry, and histopathological changes in tilapia (Oreochromis niloticus). Environ Toxicol. https://doi.org/10.1002/tox

    Article  Google Scholar 

  • Kong X, Wang G, Li S (2007) Antioxidation and ATPase activity in the gill of mud crab Scylla serrata under cold stress. Chin J Oceanol Limnol 25:221–226

    Article  CAS  Google Scholar 

  • Korai AL, Lashari KH, Sahato GA, Kazi TG (2010) Histological lesions in gills of feral cyprinids, related to the uptake of waterborne toxicants from Keenjhar lake. Rev Fish Sci 18(2):157–176

    Article  CAS  Google Scholar 

  • Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72(3):684–692

    Article  CAS  Google Scholar 

  • Liu Y, Wang J, Wei Y, Zhang H, Xu M, Dai J (2008) Induction of time-dependent oxidative stress and related transcriptional effects of perfluorododecanoic acid in zebrafish liver. Aquat Toxicol 89(4):242–250

    Article  CAS  Google Scholar 

  • Mallat J (1985) Fish gill structural changes induced by toxicants and others irritants: a statistical review. Can J Fish Aquat Sci 42:630–648

    Article  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  • Osmond MJ, Mccall MJ (2010) Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 4(1):15–41

    Article  CAS  Google Scholar 

  • Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Sci Total Environ 309(1):105–115

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14(9):1–11

    Article  Google Scholar 

  • Ruas CBG, dos Santos Carvalho C, de Araújo HSS, Espíndola ELG, Fernandes MN (2008) Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol Environ Saf 71(1):86–93

    Article  CAS  Google Scholar 

  • Saber TH (2011) Histological adaptation to thermal changes in gills of common carp fishes Cyprinus carpio L. Rafidain J Sci 22:46–55

    Google Scholar 

  • Saddick S, Afifi M, Zinada OAA (2015) Effect of Zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J Biol Sci 24(7):1672–1678

    Article  Google Scholar 

  • Sayeed I, Parvez S, Pandey S, Bin-Hafeez B, Haque R, Raisuddin S (2003) Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicol Environ Saf 56(2):295–301

    Article  CAS  Google Scholar 

  • Shahzad K, Khan MN, Jabeen F, Kosour N, Sohail M, Khan MKA, Ahmad M (2017) Bioaccumulation of manufactured titanium dioxide (TiO2), copper oxide (CuO) and zinc oxide (ZnO) nanoparticles in soft tissues of tilapia (Oreochromis mossambicus). Punjab Univ J Zool 32(2):237–243

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191

    Article  CAS  Google Scholar 

  • Sohail M, Khan MN, Chaudhry AS, Qureshi NA (2016a) Bioaccumulation of heavy metals and analysis of mineral element alongside proximate composition in foot, gills and mantle of freshwater mussels (Anodonta anatina). Rendiconti Lincei 27(4):687–696

    Article  Google Scholar 

  • Sohail M, Khan MN, Chaudhry AS, Shahzad K (2016b) Proximate composition and elemental analysis in soft tissues of freshwater mussels (Anodonta anatina) from the Chashma Lake, River Indus Pakistan. Front Biol 11(4):331–337

    Article  CAS  Google Scholar 

  • Sohail M, Khan MN, Qureshi NA, Chaudhry AS (2017) Monitoring DNA damaging in gills of freshwater mussels (Anodonta anatina) exposed to heavy metals. Pak J Zool 49(1):305–311

    Article  Google Scholar 

  • Subashkumar S, Selvanayagam M (2014a) First report on: acute toxicity and gill histopathology of fresh water fish Cyprinus carpio exposed to Zinc oxide (ZnO) nanoparticles. Int J Sci Res Publ 3:1–4

    Google Scholar 

  • Subashkumar S, Selvanayagam M (2014b) Zinc oxide (ZnO) nanoparticles induced histopathological changes in the liver of freshwater fish (Cyprinus carpio). Cibtech J Zool 3(3):74–77

    Google Scholar 

  • Suganthi P, Murali M, Sadiq Bukhari A, Syed Mohamed HE, Basu H, Singhal RK (2015) Behavioural and Histological variations in Oreochromis mossambicus after exposure to ZnO Nanoparticles. Int J Adv Res 1(8):524–531

    Google Scholar 

  • Tabrez S, Ahmad M (2011) Oxidative stress mediated genotoxicity of wastewaters collected from two different stations in northern India. Mutat Res 726(1):15–20

    Article  CAS  Google Scholar 

  • WenJing T, Wei B, ChunLu Z, ZhiYong Z, JunAn C, Xiao H, YuLiang Z (2010) Effects of ZnO nanoparticles on antioxidant enzyme system of zebrafish embryos. China Environ Sci 30(5):705–709

    Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

    Article  CAS  Google Scholar 

  • Zhao X, Wang S, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136:49–59

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Shahzad.

Additional information

Editorial responsibility: Zhenyao Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, K., Khan, M.N., Jabeen, F. et al. Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. Int. J. Environ. Sci. Technol. 16, 1973–1984 (2019). https://doi.org/10.1007/s13762-018-1807-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1807-7

Keywords

Navigation