Skip to main content

Advertisement

Log in

Way forward to achieve sustainable and cost-effective biofuel production from microalgae: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Driven by policies aimed at enhancing energy security and mitigating greenhouse gas emissions, the production and use of biofuels have significantly increased in recent years. Microalgae owing to its multiple advantages which include high lipid content, sustainable biomass production, effective land and water utilization are the most potential biofuel feedstock that can provide drop-in fossil fuel replacements without stimulating competition for agricultural resources and are considered to be more environmentally benign than the first- and second-generation biofuel feedstocks. However, there are many existing technical and scientific impediments that are yet to be resolved. Keeping this in view, the present review provides a concise account of the microalgal species known to accumulate high levels of lipid and describes the main factors that should be taken into consideration while selecting suitable algal strains for mass cultivation. The underlining advantages and limitations of raceway pond and photobioreactor cultivation systems are also examined. The recent advances in genetic engineering of microalgae to improve biomass and lipid productivity are then highlighted, which include the ongoing debate over the biosafety issues pertinent to the use of genetically modified algae. Furthermore, a wide range of high-value products that can be co-produced from microalgae have been discussed. The review concludes with a comprehensive summary of the major techno-economic constraints to commercialization of algal-derived biofuels along with promising methods for overcoming these challenges in order to produce cost-competitive and environmentally sustainable biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou-Shanab RAI, Hwang JH, Cho Y, Min B, Jeon BH (2011) Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl Energy 88:3300–3306

    Article  CAS  Google Scholar 

  • Aguirre AM, Bassi A, Saxena P (2013) Engineering challenges in biodiesel production from microalgae. Crit Rev Biotechnol 33:293–308

    Article  CAS  Google Scholar 

  • Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in microalgae by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13:540–550

    Article  CAS  Google Scholar 

  • Araujo GS, Matos LJ, Goncalves LR, Fernandes FA, Farias WR (2011) Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour Technol 102:5248–5250

    Article  CAS  Google Scholar 

  • Barrow C, Shahidi F (2008) Marine nutraceuticals and functional foods. CRC Press, New York

    Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford

    Google Scholar 

  • Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493

    Article  CAS  Google Scholar 

  • Ben-Amotz A (2003) Industrial production of microalgal cell-mass and secondary products-major industrial species: Dunaliella. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford

    Google Scholar 

  • Benedetti S, Benvenuti F, Pagliarani S, Franwgli S, Scoglio S, Canestrari F (2004) Antioxidant properties of a novel phycocyanin extract from the blue green alga Aphanizomenon flos-aquae. Life Sci 75:2353–2362

    Article  CAS  Google Scholar 

  • Bhola V, Swalaha F, Ranjith Kumar R, Singh M, Bux F (2014) Overview of the potential of microalgae for CO2 sequestration. Int J Environ Sci Technol 11:2103–2118

    Article  CAS  Google Scholar 

  • Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions. PLoS ONE. doi:10.1371/journal.pone.0042949

    Google Scholar 

  • Blatti JL, Michaud J, Burkart MD (2013) Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 17:496–505

    Article  CAS  Google Scholar 

  • Borowitzka M (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18:13–25

    Article  Google Scholar 

  • BP (2015) Energy Outlook 2035. London, UK

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Progr 22:1490–1506

    Article  CAS  Google Scholar 

  • Chao KP, Su YC (1999) Chemical composition and potential for utilization of the marine alga Rhizoclonium sp. J Appl Phycol 11:525–533

    Article  CAS  Google Scholar 

  • Chen CY, Saratale GD, Lee CM, Chen PC, Chang JS (2008) Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int J Hydrog Energy 33:6886–6895

    Article  CAS  Google Scholar 

  • Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 5:261–274

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008a) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  Google Scholar 

  • Chisti Y (2008b) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26:351–352

    Article  CAS  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO(2) utilization of Nannochloropsis oculata in response to CO(2) aeration. Bioresour Technol 100:833–838

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  Google Scholar 

  • Clarens A, Resurreccion WE, White M, Colosi L (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  Google Scholar 

  • Couto RM, Simoes PC, Reis A, Da Silva TL, Martins VH, Sanchez-Vicente Y (2010) Super critical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci 10:158–164

    CAS  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morisson LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce β-N-methylamino-l-alnaine, a neurotoxin amino acid. Proc Natl Acad Sci USA 102:5074–5078

    Article  CAS  Google Scholar 

  • Dalrymple O, Halfhide T, Udom I, Gilles B, Wolan J, Zhang Q, Ergas S (2013) Waste water use in algae production for generation of renewable resources: a review and preliminary results. Aquat Biosyst 9:2–13

    Article  Google Scholar 

  • Damiani MC, Popovich CA, Constenla D, Leonardi PI (2010) Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour Technol 101:3801–3807

    Article  CAS  Google Scholar 

  • Dana GV, Kuiken T, Rejeski D, Snow AA (2012) Synthetic biology: four steps to avoid a synthetic-biology disaster. Nature. doi:10.1038/483029a

    Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • de Morais MG, Costa JA (2007a) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliqus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  CAS  Google Scholar 

  • de Morais MG, Costa JA (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manage 48:2169–2173

    Article  CAS  Google Scholar 

  • de Morais MG, Costa JA (2007c) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352

    Article  CAS  Google Scholar 

  • Del Campo JA, Garcia-Gonzalez M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  CAS  Google Scholar 

  • DOE (2010) National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412

    Article  Google Scholar 

  • Dufosse L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE, Roesller PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012

    Article  CAS  Google Scholar 

  • Energy Information Administration (EIA) (2013) Energy review, U.S. Department of Energy

  • Fan Y, Yan C, Andre C, Shanklin J, Schwender J, Xu C (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390

    Article  CAS  Google Scholar 

  • FAO (2010) Algae-based biofuels: applications and co-products. FAO, Rome

    Google Scholar 

  • FAO (2012) Biofuel co-products as livestock feed-Opportunities and challenges. Rome

  • Feng DN, Chen ZA, Xue S, Zhang W (2011a) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102:6710–6716

    Article  CAS  Google Scholar 

  • Feng YJ, Li C, Zhang DW (2011b) Lipid production of Chlorella vulgaris cultured in artificial; wastewater medium. Bioresour Technol 102:101–105

    Article  CAS  Google Scholar 

  • Gao CF, Zhai Y, Ding Y, Wu QY (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761

    Article  CAS  Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Naseri AT, Montazeri-Najafabady N, Mobasher MA, Dabbagh F (2012) Microalgae biofuel potentials. Appl Biochem Microbiol 48:126–144

    Article  CAS  Google Scholar 

  • Gouveia L, Marques AE, daSilva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    Article  CAS  Google Scholar 

  • Gressel J, van der Vlugt CJB, Bergmans HEN (2013) Environmental risks of large scale cultivation of microalgae: mitigation of spills. Algal Res 2:286–298

    Article  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732

    Article  CAS  Google Scholar 

  • Harun R, Davidson M, Doyle M, Gopiraj R, Danquajh M, Forde G (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35:741–747

    Article  CAS  Google Scholar 

  • Harvey AP, Mackley MR, Seliger T (2003) Process intensification of biodiesel production using a continuous oscillatory flow reactor. J Chem Technol Biotechnol 78:338–341

    Article  CAS  Google Scholar 

  • Henley WJ, Litaker RW, Novoveska L, Duke CS, Quemada HD, Sayre RT (2013) Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Res 2:66–77

    Article  Google Scholar 

  • Hodaifa G, Martinez ME, Sanchez S (2008) Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour Technol 99:1111–1117

    Article  CAS  Google Scholar 

  • Hon-Nami K, Hirano A, Kunito S, Tsuyuki Y, Kinoshita T, Ogushi Y (1997) A new marine microalga cultivation in a tubular bioreactor and its utilization as an additive for paper surface improvements. Energy Convers Manag 38:S481–S486

    Article  Google Scholar 

  • Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926

    Article  CAS  Google Scholar 

  • Hsieh HJ, Su CH, Chien LJ (2012) Accumulation of lipid production in Chlorella minutissima by triacylglycerol biosynthesis-related genes cloned from Saccharomyces cerevisiae and Yarrowia lipolytica. J Microbiol 50:526–534

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huang YT, Su CP (2014) High lipid content and productivity of microalgae cultivating under elevated carbon dioxide. Int J Environ Sci Technol 11:703–710

    Article  CAS  Google Scholar 

  • Huerlimann R, Heimann K (2013) Comprehensive guide to acetyl-carboxylases in algae. Crit Rev Biotechnol 33:49–65

    Article  CAS  Google Scholar 

  • Huerlimann R, de Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107:245–257

    Article  CAS  Google Scholar 

  • Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12:573–608

    Article  Google Scholar 

  • IEF (2010) Assessment of biofuels potential and limitations. IEF, Cancun

    Google Scholar 

  • Jain RK, Coffey M, Lai K, Kumar A, Mackenzie SL (2000) Enhancement of seed oil content by expression glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans 28:959–960

    Article  Google Scholar 

  • Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, Covello PS, Taylor DC (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhanced seed oil content and seed weight. Plant Physiol 126:861–874

    Article  CAS  Google Scholar 

  • Jea JY, Park PJ, Kim EK, Park JS, Yoon HD, Kim KR, Ahn CB (2009) Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. Food Sci Technol 42:874–878

    Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  Google Scholar 

  • Kadam KL (2002) Environmental implications of power generation via coal-microalgae cofiring. Energy 27:905–922

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91–100

    Article  CAS  Google Scholar 

  • Kumar S (2015) GM algae for biofuel production: biosafety and risk assessment. Collect Biosaf Rev 9:52–75

    Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  Google Scholar 

  • Lardon L, Helias A, Siave B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  • Larkum AW, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205

    Article  CAS  Google Scholar 

  • Lee DH (2011) Algal biodiesel economy and competition among bio-fuels. Bioresour Technol 102:43–49

    Article  CAS  Google Scholar 

  • Leite GB, Abdelaziz AEM, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141

    Article  CAS  Google Scholar 

  • Li Y, Horseman M, Wu N, Lan CQ, Dubois-Calero N (2008a) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  Google Scholar 

  • Li YQ, Horsman M, Wang B, Wu N, Lan CQ (2008b) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010a) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper accumulates triacylglycerol. Metab Eng 12:387–391

    Article  CAS  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010b) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    Article  CAS  Google Scholar 

  • Li YT, Han DX, Sommerfeld M, Hu QA (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  CAS  Google Scholar 

  • Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408

    Article  CAS  Google Scholar 

  • Liu B, Benning C (2012) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:1–10

    Article  CAS  Google Scholar 

  • Lu J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466

    Article  CAS  Google Scholar 

  • Makareviciene V, Skorupskaite V, Andruleviciute V (2013) Biodiesel fuel from microalgae-promising alternative fuel for the future: a review. Rev Environ Sci Biotechnol 12:119–130

    Article  CAS  Google Scholar 

  • Martinez ME, Sanchez S, Jimenez JM, Yousfi FEI, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46:7073–7085

    Article  CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34:1–5

    Article  CAS  Google Scholar 

  • Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Tech 113:539–547

    Article  CAS  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41

    Article  Google Scholar 

  • Misra N, Panda PK, Parida BK, Mishra BK (2012) Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analyses. Evol Bioinform 8:545–564

    CAS  Google Scholar 

  • Misra N, Panda PK, Parida BK (2013) Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. OMICS 17:537–549

    Article  CAS  Google Scholar 

  • Molina-Grima E, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    Article  Google Scholar 

  • Munoz R, Kollner C, Guieysse B (2009) Biofilm photobioreactors for the treatment of industrial wastewaters. J Hazard Mater 161:29–34

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56

    Article  CAS  Google Scholar 

  • Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569

    Article  CAS  Google Scholar 

  • Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KF, Kugler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS ONE. doi:10.1371/journal.pone.0061375

    Google Scholar 

  • Petrovic A, Simonic M (2015) The effect of carbon source on nitrate and ammonium removal from drinking water by immobilised Chlorella sorokiniana. Int J Environ Sci Technol 12:3175–3188

    Article  CAS  Google Scholar 

  • Podkuiko L, Ritslaid K, Oly J, Kikas T (2014) Review of promising strategies for zero-waste production of the third generation biofuels. Agron Res 12:373–390

    Google Scholar 

  • Priyadarshini I, Rath B (2012) Commercial and industrial applications of microalgae—a review. J Algal Biomass Utln 3:89–100

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Ashok NK, Sridhar S, Rengasamy R (2008) A perspective of the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  CAS  Google Scholar 

  • Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high grow rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259

    Article  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  Google Scholar 

  • Reijnders MJ, van Heck RG, Lam CM, Scaife MA, dos Santos VA, Smith AG, Schaap PJ (2014) Green genes: bioinformatics and systems- biology innovations drive algal biotechnology. Trends Biotechnol 32:617–626

    Article  CAS  Google Scholar 

  • REN21 (2009) Renewable global status report: 2009 update

  • Renuka N, Sood A, Prasanna R, Ahluwalia AS (2015) Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation. Int J Environ Sci Technol 12:1443–1460

    Article  CAS  Google Scholar 

  • Richmond A (1988). In: Borowitzka MA, Borowitzka LJ (eds) Spirulina in Micro-algal biotechnology. Cambridge University Press, New York, pp 85–121

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell, Oxford

    Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Roesller PG (1990) Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica. Plant Physiol 92:73–78

    Article  Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  CAS  Google Scholar 

  • Sawayama S, Inoue S, Dote Y, Yokoyama SY (1995) CO2 fixation and oil production through microalgae. Energy Convers Manag 36:729–731

    Article  CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schuhmann H, Lim DKY, Schenk PM (2011) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86

    Article  CAS  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst J, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  CAS  Google Scholar 

  • Sekabira K, Origa HO, Basamba TA, Mutumba G, Kakudidi E (2011) Application of algae in biomonitoring and phytoextraction of heavy metals contamination in urban stream water. Int J Environ Sci Technol 8:115–128

    Article  CAS  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation and UV-protective functions in aquatic organisms. Ann Rev Physiol 64:223–262

    Article  CAS  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  Google Scholar 

  • Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Snow AA, Androw DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment. Current status and recommendation. Ecol Appl 15:377–404

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077

    Article  CAS  Google Scholar 

  • Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: towards a green revolution. Trends Biotechnol 29:615–623

    Article  CAS  Google Scholar 

  • Taylor DC, Katavic V, Zou J, Mackenzie SL, Keller WA, An J, Friesen W, Barton DL, Pedersen KK, Giblin EM (2002) Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol Breed 8:317–322

    Article  CAS  Google Scholar 

  • Thomas NV, Kim SK (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 11:146–164

    Article  CAS  Google Scholar 

  • Tominaga K, Hongo N, Karato M, Yamashita E (2012) Cosmetic benefits of astaxanthin on human subjects. Acta Biochim Pol 59:43–47

    CAS  Google Scholar 

  • Tseng CK (2004) The past, present and future of phycology in China. Hydrobiologia 512:11–20

    Article  Google Scholar 

  • Ugwu CU, Aoyagi H, Uehiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • Ververis C, Georghiou K, Danielidis D, Hatzinikolaou DG, Santas P, Santas R, Corleti V (2007) Cellulose, hemicelluloses, lignin and ash content of some organic materials and their sustainability for use as paper pulp supplements. Bioresour Technol 98:296–301

    Article  CAS  Google Scholar 

  • Wang ZT, Ulrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  CAS  Google Scholar 

  • Wang J, Jin W, Hou Y, Niu X, Zhang H, Zhang Q (2013) Chemical composition and moisture- absorption/retention ability of polysaccharides extracted from five algae. Int J Biol Macromol 57:26–29

    Article  CAS  Google Scholar 

  • Wang HMD, Chen CC, Huynh P, Chang JS (2015) Exploring the potential of using algae in cosmetics. Bioresour Technol 184:355–362

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4:287–295

    Article  CAS  Google Scholar 

  • Williams PJB, Laurens LML (2010) Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetic and economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Wolt JD, Keese P, Raybould A, Fitzpatrick JW, Burachik M, Gray A, Olin SS, Schiemann J, Sears M, Wu F (2010) Problem formulation in the environmental risk assessment for genetically modified plants. Trans Res 19:425–436

    Article  CAS  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta 7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261

    Article  CAS  Google Scholar 

  • Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD, Liu JS, Lu SH, Guan Y, Li HY (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67–81

    Article  CAS  Google Scholar 

  • Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact. doi:10.1186/1475-2859-10-91

    Google Scholar 

  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW (1997) Carbon dioxide fixation by algal cultivation using waste water nutrients. J Chem Technol Biotechnol 69:451–455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.M. acknowledges the Council of Scientific and Industrial Research, Government of India, for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, N., Panda, P.K., Parida, B.K. et al. Way forward to achieve sustainable and cost-effective biofuel production from microalgae: a review. Int. J. Environ. Sci. Technol. 13, 2735–2756 (2016). https://doi.org/10.1007/s13762-016-1020-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1020-5

Keywords

Navigation