Skip to main content
Log in

Influence of Process Parameters and Reinforcements on Aluminum Hybrid Composites Developed by Powder Metallurgy Process

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this study, aluminum hybrid composites were developed by the powder metallurgy in which Si3N4 and ZrO2 were used as reinforcements. The synthesized composite powder as per weight percentage of the reinforcements milled in a centrifugal ball mill at 600 rpm for 0.5 and 2.5 h and then compacted at 420 MPa. The compacted composites were kept in a tube furnace for sintering at 550°C under controlled environment conditions for 30 min. The influence of the milling time and wt % of the reinforcements was investigated in relation of the effect on the microstructure, density, and hardness of the composites. The SEM images indicated that the Si3N4/ZrO2 particles were homogeneously mixed with the matrix and the reduction of clusters also observed with increasing the milling time. It was also observed that high milling time and wt % of high-density reinforcements increase the density of the composites, and the porosity decreases. Finally, it was found that the micro-hardness also improved with fine homogeneous and high-strength ceramic reinforcements embedded in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. T. Khorshid, S. A. J. Jahromi, and M. M. Moshksar, “Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion,” Mater. Des. 31, 3880–3884 (2010). https://doi.org/10.1016/j.matdes.2010.02.047

    Article  CAS  Google Scholar 

  2. J. Singh and A. Chauhan, “Characterization of hybrid aluminum matrix composites for advanced applications—A review,” J. Mater. Res. Technol. 5, 159–169 (2016). https://doi.org/10.1016/j.jmrt.2015.05.004

    Article  CAS  Google Scholar 

  3. V. V. Vani and S. K. Chak, “The effect of process parameters in aluminum metal matrix composites with powder metallurgy,” Manuf. Rev. 5, 7 (2018). https://doi.org/10.1051/mfreview/2018001

    Article  CAS  Google Scholar 

  4. M. K. Surappa, “Aluminum matrix composites: challenges and opportunities,” Sadhana 28, 319–334 (2003). https://doi.org/10.1007/BF02717141

    Article  CAS  Google Scholar 

  5. S. Sivakumar, S. K. Thimmappa, and B. R. Golla, “Corrosion behavior of extremely hard Al–Cu/Mg–SiC light metal alloy composites,” J. Alloys Compd. 767, 703–711 (2018). https://doi.org/10.1016/j.jallcom.2018.07.117

    Article  CAS  Google Scholar 

  6. N. Panwar and A. Chauhan, “Fabrication methods of particulate reinforced Aluminum metal matrix composite—A review,” Mater. Today Proc. 5, 5933–5939 (2018). https://doi.org/10.1016/j.matpr.2017.12.194

    Article  CAS  Google Scholar 

  7. S. M. Zebarjad and S. A. Sajjadi, “Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time,” Mater. Des. 28, 2113–2120 (2007). https://doi.org/10.1016/j.matdes.2006.05.020

    Article  CAS  Google Scholar 

  8. A. Parveen, N. R. Chauhan, and M. Suhaib, “Study of Si3N4 reinforcement on the morphological and tribo-mechanical behaviour of aluminum matrix composites,” Mater. Res. Express 6, 42001 (2019). https://doi.org/10.1088/2053-1591/aaf8d8

    Article  CAS  Google Scholar 

  9. C. V. V. V. Mahesh Kumar, “A comprehensive review on material selection, processing, characterization and applications of aluminum metal matrix composites, Mater. Res. Express 6, (2019). https://doi.org/10.1088/2053-1591/ab0ee3

  10. G. P. Zhang, Q. S. Mei, C. L. Li, F. Chen, X. M. Mei, J. Y. Li, and X. F. Ruan, “Fabrication and properties of Al–TiAl3–Al2O3 composites with high content of reinforcing particles by accumulative roll-bonding and spark plasma sintering,” Mater. Today Commun. 24, (2020). https://doi.org/10.1016/j.mtcomm.2020.101060

  11. P. S. Bains, S. S. Sidhu, and H. S. Payal, “Fabrication and machining of metal matrix composites: A review,” Mater. Manuf. Process. 31, 553–573 (2016). https://doi.org/10.1080/10426914.2015.1025976

    Article  CAS  Google Scholar 

  12. M. O. Bodunrin, K. K. Alaneme, and L. H. Chown, “Aluminium matrix hybrid composites: A review of reinforcement philosophies; Mechanical, corrosion and tribological characteristics,” J. Mater. Res. Technol. 4, 434–445 (2015). https://doi.org/10.1016/j.jmrt.2015.05.003

    Article  CAS  Google Scholar 

  13. J. M. Torralba, C. E. Da Costa, and F. Velasco, “P/M aluminum matrix composites: An overview,” J. Mater. Process. Technol. 133, 203–206 (2003). https://doi.org/10.1016/S0924-0136(02)00234-0

    Article  CAS  Google Scholar 

  14. P. Samal, P. R. Vundavilli, A. Meher, and M. M. Mahapatra, “Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties,” J. Manuf. Process. 59, 131–152 (2020). https://doi.org/10.1016/j.jmapro.2020.09.010

    Article  Google Scholar 

  15. P. Sharma, D. Khanduja, and S. Sharma, “Tribological and mechanical behavior of particulate aluminum matrix composites,” J. Reinf. Plast. Compos. 33, 2192–2202 (2014). https://doi.org/10.1177/0731684414556012

    Article  CAS  Google Scholar 

  16. V. Umasankar, “Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminum alloy matrix composite by powder processing,” J. Alloys Compd. 582, 380–386 (2014). https://doi.org/10.1016/j.jallcom.2013.07.129

    Article  CAS  Google Scholar 

  17. Y. Afkham, R. A. Khosroshahi, R. Kheirifard, R. T. Mousavian, and D. Brabazon, Microstructure and morphological study of ball-milled metal matrix nanocomposites, Phys. Met. Metallogr. 118 (2017) 749–758. https://doi.org/10.1134/S0031918X17080026

    Article  CAS  Google Scholar 

  18. M. A. Eremina, S. F. Lomaeva, S. N. Paranin, S. L. Demakov, and E. P. Elsukov, “Effect of compaction method on the structure and properties of bulk Cu + Cr3C2 composites,” Phys. Met. Metallogr. 117, 510–517 (2016). https://doi.org/10.1134/S0031918X16050057

    Article  CAS  Google Scholar 

  19. J. S. Benjamin and T. E. Volin, “The mechanism of mechanical alloying,” Met. Trans. 5, 1929–1934 (1974). https://doi.org/10.1007/BF02644161

    Article  CAS  Google Scholar 

  20. C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46, 1–184 (2001). https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  21. J. W. Kaczmar, K. Pietrzak, and W. Wlosinski, “The production and application of metal matrix composite materials,” J. Mater. Process. Technol. 106, 58–67 (2000). https://doi.org/10.1016/S0924-0136(00)00639-7

    Article  Google Scholar 

  22. J. Fogagnolo, F. Velasco, M. Robert, and J. Torralba, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders,” Mater. Sci. Eng., A 342, 131–143 (2003). https://doi.org/10.1016/S0921-5093(02)00246-0

    Article  Google Scholar 

  23. H. Arik, “Effect of mechanical alloying process on mechanical properties of a-Si3N4 reinforced aluminum-based composite materials,” Mater. Des. 29, 1856–1861 (2008). https://doi.org/10.1016/j.matdes.2008.03.010

    Article  CAS  Google Scholar 

  24. A. Fathy, A. Wagih, M. Abd El-Hamid, and A. A. Hassan, “Effect of mechanical milling on the morphology and structural evaluation of Al–Al2O3 nanocomposite powders,” Int. J. Eng. Trans. A 27, 625–632 (2014). https://doi.org/10.5829/idosi.ije.2014.27.04a.14

    Article  Google Scholar 

  25. E. Dagasan, E. Gercekcioglu, and S. Unalan, “Characterization of ball milled Al–Al2O3 sub-micron composites,” in IOP Conf. Ser. Mater. Sci. Eng. 295, (2018). https://doi.org/10.1088/1757-899X/295/1/012045.

  26. K. Goyal and K. Marwaha, “Processing and Properties of aluminum matrix composites : A short review,” Eur. J. Adv. Eng. Technol. 3, 54–59 (2016).

    Google Scholar 

  27. D. Nayak and M. Debata, “Effect of composition and milling time on mechanical and wear performance of copper-graphite composites processed by powder metallurgy route,” Powder Metall. 57, 265–273 (2014). https://doi.org/10.1179/1743290113Y.0000000080

    Article  CAS  Google Scholar 

  28. S. Karthkeyan, R. Karunanithi, and A. Ghosh, “Investigation on microstructures, mechanical and wear properties of Al 390/ZrO2 composite materials fabricated by P/M method,” Multidiscip. Model. Mater. Struct. 17, (2020). https://doi.org/10.1108/MMMS-10-2019-0180

  29. Udaya and P. Fernandes, “Effect of fly ash and ball milling time on CNT-FA reinforced aluminum matrix hybrid composites,” Mater. Res. Express. 6, 085027 (2019). https://doi.org/10.1088/2053-1591/ab1e20

    Article  CAS  Google Scholar 

  30. V. S. Ekinci, C. Baǧci, and H. Arik, “Effect of Al2O3 content and milling time on microstructure and mechanical properties of aluminum metal matrix composites,” Exp. Technol. 38, 66–73 (2014). https://doi.org/10.1111/j.1747-1567.2011.00790.x

    Article  Google Scholar 

  31. J. B. Fogagnolo, E. M. Ruiz-Navas, M. H. Robert, and J. M. Torralba, “6061 Al reinforced with silicon nitride particles processed by mechanical milling,” Scr. Mater. 47, 243–248 (2002). https://doi.org/10.1016/S1359-6462(02)00133-1

    Article  CAS  Google Scholar 

  32. J. B. Fogagnolo; M. H. Robert, and J. M. Torralba, “The effects of mechanical alloying on the extrusion process of AA 6061 alloy reinforced with Si3N4,” J. Braz. Soc. Mech. Sci. Eng., 1–11 (2003).

  33. A. Fathy, O. Elkady, and A. Abu-Oqail, “Production and properties of Cu–ZrO2 nanocomposites,” J. Compos. Mater. 52, 1519–1529 (2018). https://doi.org/10.1177/0021998317726148

    Article  CAS  Google Scholar 

  34. M. Toozandehjani, K. A. Matori, F. Ostovan, S. A. Aziz, and M. S. Mamat, “Effect of milling time on the microstructure, physical and mechanical properties of Al–Al2O3 nanocomposite synthesized by ball milling and powder metallurgy,” Materials (Basel) 10, (2017). https://doi.org/10.3390/ma10111232

  35. D. R. Amador and J. M. Torralba, “Morphological and microstructural characterisation of low-alloying Fe powder obtained by mechanical attrition,” J. Mater. Process. Technol. 143144, 776–780 (2003). https://doi.org/10.1016/S0924-0136(03)00372-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Parveen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, A., Chauhan, N.R. & Suhaib, M. Influence of Process Parameters and Reinforcements on Aluminum Hybrid Composites Developed by Powder Metallurgy Process. Phys. Metals Metallogr. 122, 1007–1013 (2021). https://doi.org/10.1134/S0031918X21100094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21100094

Keywords:

Navigation