Skip to main content
Log in

Effects of Mechanical Milling Time and Boron Carbide Reinforcement Content on Powder and Hot Extruded Al–2wt.%Cu–B4C Nanocomposites: Microstructural, Mechanical and Fracture Characterization

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The main objective of this study is an investigation on influences of mechanical milling time and B4C reinforcement content on microstructure and mechanical properties of powder and hot extruded B4C reinforced Al–2wt.%Cu aluminum alloy matrix nanocomposites. These composites were fabricated through mechanical milling, cold isostatic pressing and hot extrusion processes. Results of powder characterization showed that steady-state time of mechanical milling was predicted to be around 20 h. Microstructural analyses of Al–Cu–4wt.%B4C composite powder revealed that strain-induced dissolution of fine B4C reinforcements and in situ formation of Al3BC phases within the nanocrystalline aluminum matrix were detected only when the composite powder was subjected to at least mechanical milling time of 20 h and subsequent heat treatment. Strength and hardness of the nanostructured samples were significantly improved by increasing mechanical milling time and B4C reinforcement weight percent due to higher level of severe plastic deformation applied to the powders during the fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Khademian M, Alizadeh A, and Abdollahi A, Trans Indian Inst Met 70 (2016) 1635.

    Article  Google Scholar 

  2. Chi Y, Gu G, Yu H, and Chen C, Opt Lasers Eng 100 (2018) 23.

    Article  Google Scholar 

  3. Sahin Y, and Kilicli V, Wear 271 (2011) 2766.

    Article  Google Scholar 

  4. Kok M, and Ozdin K, J Mater Process Technol 183 (2007) 301.

    Article  Google Scholar 

  5. Tazari H, and Siadati M H, J Alloys Compd 729 (2017) 960.

    Article  Google Scholar 

  6. Abdollahi A, Alizadeh A, and Baharvandi H R, Mater Des 55 (2014) 471.

    Article  Google Scholar 

  7. Alizadeh A, Eslami M, and Babaee M H, Trans Indian Inst Met 71 (2018) 2325.

    Article  Google Scholar 

  8. Sharma V K, Singh R C, and Chaudhary R, Eng Sci Technol Int J 20 (2017) 1318.

    Article  Google Scholar 

  9. Luo Z, Song Y, Zhang S, and Miller D J, Metall Mater Trans A 43 (2012) 281.

    Article  Google Scholar 

  10. Viala J C, Bouix J, Gonzalez G, and Esnouf C, J Mater Sci 32 (1997) 4559.

    Article  Google Scholar 

  11. Zhang Z, Chen X G, and Charette A, J Mater Sci 42 (2007) 7354.

    Article  Google Scholar 

  12. Han B Q, and Lavernia E J, Adv Eng Mater 7 (2005) 457.

    Article  Google Scholar 

  13. Ahn B, Deformation behavior and microstructural evolution of nanocrystalline aluminum alloys and composites, MSc Thesis, University of Southern California, United States of America (2008).

  14. Chawala N, and Chawala K K, Metal Matrix Composites, Springer, Berlin (2006).

    Google Scholar 

  15. Chawala K K, Composite Materials, Springer, New York (2012).

    Book  Google Scholar 

  16. Kandpal B C, Kumar J, and Singh H, Mater Today 4 (2017) 2783.

    Article  Google Scholar 

  17. Ray S, J Mater Sci 28 (1993) 5397.

    Article  Google Scholar 

  18. Dhanashekar M, and Senthil Kumar V S, Procedia Eng 97 (2014) 412.

    Article  Google Scholar 

  19. Senemar M, Niroumand B, Maleki A, and Rohatgi P K, J Compos Mater 52 (2017) 123.

    Article  Google Scholar 

  20. Singh M, Rana R S, Purohit R, and Sahu K, Mater Today 2 (2015) 3697.

    Article  Google Scholar 

  21. Torralba J M, Da Cost C E, and Velasco F, J Mater Process Technol 133 (2003) 203.

    Article  Google Scholar 

  22. Prasad V V B, Bhat B V R, Mahajan Y R, and Ramakrishnan P, Mater Sci Eng A 337 (2002) 179.

    Article  Google Scholar 

  23. Benjamin J S, Metall Trans 1 (1970) 2943.

    Google Scholar 

  24. Dagasan E, Gercekcioglu E, and Unalan S, J Powder Metall Min 6 (2017) 1.

    Google Scholar 

  25. Suryanarayana C, Ivanov E, and Boldyrev V V, Mater Sci Eng A 304 (2001) 151.

    Article  Google Scholar 

  26. Witkin D, Han B Q, and Lavernia E J, Metall Mater Trans A 37 (2006) 185.

    Article  Google Scholar 

  27. Dhal A, Panigrahi S K, and Shunmugam M S, J Alloys Compd 726 (2017) 1205.

    Article  Google Scholar 

  28. Vasil’ev L S, Lomaev I L, and Elsukov E P, Phys Met Metallogr 107 (2009) 141.

    Article  Google Scholar 

  29. Zemtsova N D, Sagaradze V V, and Romashov L N, Phys Met Metallogr 47 (1979) 937.

    Google Scholar 

  30. Ivanisenko Y, Lojkowski W, Valiev R Z, and Fecht H J, Acta Mater 51 (2003) 5555.

    Article  Google Scholar 

  31. Dorofeev G A, Eslukov E P, and Zagainov A V, Phys Met Metallogr 98 (2004) 60.

    Google Scholar 

  32. Vasil’ev L S, Lomaev I L, and Elsukov E P, Phys Met Metallogr 102 (2006) 186.

    Article  Google Scholar 

  33. Kubota M, and Cizek P, J Alloys Compd 457 (2008) 209.

    Article  Google Scholar 

  34. Alizadeh A, Abdollahi A, and Radfar M J, Trans Nonferrous Met Soc China 27 (2017) 1233.

    Article  Google Scholar 

  35. ASTM B384-17, Standard test method for microindentation hardness of materials, ASTM International (2017).

  36. Cullity B D, and Stock S R, Elements of X-ray Diffraction, 3rd ed., Prentice-Hall, New York (2001).

    Google Scholar 

  37. ASTM B557-15, Standard Test Methods for Tension Testing Wrought and Cast Aluminum And Magnesium Alloy Products, ASTM International (2015).

  38. ASTM E9-09, Standard Test Methods for Compression Testing of Metallic Materials at Room Temperature, ASTM International (2009).

  39. Fogagnolo J B, Velasco F, Robert M H, and Torralba J M, Mater Sci Eng A 342 (2003) 131.

    Article  Google Scholar 

  40. Suryanarayana C, Prog Mater Sci 46 (2001) 1.

    Article  Google Scholar 

  41. Taheri-Nassaj E, and Alizadeh A, Adv Mater Res 383 (2012) 2733.

    Google Scholar 

  42. Razavi Hesabi Z, Simchi A, and Seyed Reihani S M, Mater Sci Eng A 428 (2006) 159.

    Article  Google Scholar 

  43. Friend C M, Mater Sci Technol 5 (1989) 1.

    Article  Google Scholar 

  44. Kouzeli M, and Mortensen A, Acta Mater 50 (2002) 39.

    Article  Google Scholar 

  45. Zhang Z, and Chen D L, Scr Mater 54 (2006) 1321.

    Article  Google Scholar 

  46. Alizadeh A, Taheri-Nassaj E, and Baharvandi H R, Bull Mater Sci 34 (2011) 1039.

    Article  Google Scholar 

  47. Abdollahi A, Alizadeh A, and Baharvandi H R, Mater Sci Eng A 608 (2014) 139.

    Article  Google Scholar 

  48. Fecht H J, Nanostruct Mater 6 (1995) 33.

    Article  Google Scholar 

  49. Kubota M, J Alloys Compd 504 (2010) 319.

    Article  Google Scholar 

  50. Kubota M, J Alloys Compd 434435 (2007) 294.

    Article  Google Scholar 

  51. Gostariani R, Asadi Asadabad M, Paydar M H, and Ebrahimi R, Adv Powder Technol 28 (2017) 2232.

    Article  Google Scholar 

  52. Alizadeh A, and Taheri-Nassaj E, Mater Charact 67 (2012) 119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, A., Babaee, M.H. Effects of Mechanical Milling Time and Boron Carbide Reinforcement Content on Powder and Hot Extruded Al–2wt.%Cu–B4C Nanocomposites: Microstructural, Mechanical and Fracture Characterization. Trans Indian Inst Met 72, 701–718 (2019). https://doi.org/10.1007/s12666-018-1522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1522-6

Keywords

Navigation