Skip to main content

Advertisement

Log in

Effect of Intercritical Rolling on the Microstructure, Texture and Mechanical Properties of Dual Phase TWIP Steel

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In the current research, deformed microstructures and mechanical properties were studied for two dual phase TWIP steels (i.e. TWIP 1 and TWIP 2) subjected to intercritical rolling at 700 °C. Microstructural refinements were observed for both the TWIP steels due to intercritical rolling. Optical, SEM, TEM and EBSD micrographs reveal austenitic matrix with annealing and deformation twins, DIF along the direction of rolling for both steels. Major microstructural difference is fine-grained microstructure and more DIF for TWIP 2 steel due to grain refinement achieved due to combined effects of intercritical rolling and Ti microalloying when compared to Ti-free TWIP 1 steel. Misorientation distribution map of both steels show a misorientation peak at 60° which is a characteristic of formation of deformation twin obtained as a result of intercritical rolling. EBSD study shows strong Goss Twin {113} 〈332〉, weak cube {001} 〈100〉 and γ-fibre (〈111〉//ND) components along with low intensity of Cu {211} 〈111〉 and Brass {011} 〈211〉 components in austenite of TWIP 1 steel, whereas TWIP 2 shows strong Copper Twin (CuT) {552} 〈115〉 and γ-fibre components. On the contrary, ferrite texture consists of strong α-fibre such as Rotated Copper (Rt-Cu) {112} 〈110〉 with weak γ-fibre components in both steels. TWIP 2 steel contributes to increase in hardness (from 305 to 327 HV) and strength (from 949 to 952 MPa) and lowering of elongation (from 34 to 29%) than those of TWIP 1 steel due to strain hardening and grain refinement resulting from intercritical rolling. Fractography reveals ductile fracture for TWIP 1 steel and quasi-cleavage fracture for TWIP 2 steel due to combined effect of intercritical rolling and Ti microalloying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from Ref [49], available under CC BY 3.0 license at IOP Publishing

Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Yassine, T. Miklós, Multi Science – XXXII, in Micro-CAD International Multidisciplinary Scientific Conference. University of Miskolc, (2018) https://doi.org/10.26649/16usic.2018.038.

  2. N.K. Tewary, S.K. Ghosh, S. Bera, D. Chakrabarti, S. Chatterjee, Influence of cold rolling on microstructure, texture and mechanical properties of low carbon high Mn TWIP steel. Mater. Sci. Eng. A. 615, 405–415 (2014)

    Article  CAS  Google Scholar 

  3. S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Mater. 52, 2005–2012 (2004)

    Article  CAS  Google Scholar 

  4. N.K. Tewary, S.K. Ghosh, A. Mandal, D. Chakrabarti, S. Chatterjee, Effect of annealing on the microstructure, texture and mechanical properties of a dual-phase ultrahigh-strength TWIP steel. Metall. Mater. Trans. A. 51A, 4483–4498 (2020)

    Article  CAS  Google Scholar 

  5. N.K. Tewary, S.K. Ghosh, R. Saha, S. Chatterjee, Deformation and annealing behaviour of a low carbon high Mn TWIP steel microalloyed with Ti. Philos. Mag. 99, 2487–2516 (2019)

    Article  CAS  Google Scholar 

  6. L. Fu, M. Shan, D. Zhang, H. Wang, W. Wang, A. Shan, Microstructure evolution and mechanical Behavior of a hot-rolled high-manganese dual-phase transformation-induced plasticity/twinning-induced plasticity steel. Metall. Mater. Trans. A. 48A, 2179–2192 (2017)

    Article  CAS  Google Scholar 

  7. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, D.K. Matlock, Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall. Mater. Trans. A. 42A, 3691–3702 (2011)

    Article  CAS  Google Scholar 

  8. G. Meric de Bellefon, M.N. Gussev, A.D. Stoica, J.C. van Duysen, K. Sridharan, Examining the influence of stacking fault width on deformation twinning in an austenitic stainless steel. Scr. Mater. 157, 162–166 (2018)

    Article  CAS  Google Scholar 

  9. K.M. Bobby, R.K. Singh Raman, S. Khoddam, Comparative studies on the corrosion properties of a Fe–Mn–Al–Si steel and an interstitial-free steel. Corros. Sci. 50, 2879–2884 (2008)

    Article  CAS  Google Scholar 

  10. Y.S. Chun, K.T. Park, C.S. Lee, Delayed static failure of twinning-induced plasticity steels. Scr. Mater. 66, 960–965 (2012)

    Article  CAS  Google Scholar 

  11. G. Frommeyer, U. Brux, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 43(3), 438–446 (2003)

    Article  CAS  Google Scholar 

  12. Y. Zou, Y.B. Xu, Z.P. Hu, S.Q. Chen, D.T. Han, R.D.K. Misra, G.Z. Wang, High strength-toughness combination of a low-carbon medium-manganese steel plate with laminated microstructure and retained austenite. Mater. Sci. Eng. A. 707, 270–279 (2017)

    Article  CAS  Google Scholar 

  13. F. Reyes-Calderón, I. Mejía, J.M. Cabrera, Hot deformation activation energy (QHW) of austenitic Fe-22Mn-1.5 Al-1.5 Si-0.4 C TWIP steels microalloyed with Nb, V, and Ti. Mater. Sci. Eng. A. 562, 46–52 (2013)

    Article  CAS  Google Scholar 

  14. D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, G. Wu, N. Lv, F. Ren, Influences of Nb-microalloying on microstructure and mechanical properties of Fe–25Mn–3Si–3Al TWIP steel. Mater. Des. 84, 238–244 (2015)

    Article  CAS  Google Scholar 

  15. A.S. Magalhães, C.E.D. Santos, A.O.V. Ferreira, D.S. Alves, D.B. Santos, Mater. Sci. Tech. 35, 2120–2133 (2019)

    Article  CAS  Google Scholar 

  16. B.K. Sahoo, V.C. Srivastava, B. Mahato, S.G. Chowdhury, Microstructure-mechanical property evaluation and deformation mechanism in Al added medium Mn steel processed the intercritical rolling and annealing. Mater. Sci. Eng. A. 799, 140100 (2021)

    Article  CAS  Google Scholar 

  17. B.K. Sahoo, V.C. Srivastava, A.K. Chandan, H.S. Chhabra, S.G. Chowdhury, Evolution of microstructure and deformation behavior in Al–Ni added medium-Mn steel processed through intercritical / cold rolling and annealing. Mater. Sci. Eng. A. 824, 141852 (2021)

    Article  CAS  Google Scholar 

  18. J. Trzaska, L.A. Dobrzański, Modelling of CCT Diagrams for engineering and constructional Steels. J. Mater. Proc. Tech. 192–193, 504–510 (2007)

    Article  CAS  Google Scholar 

  19. S.H. Park, Development of Ductile Ultra-High Strength Hot Rolled Steels. POSCO Technical Report, (1996) pp. 50–128.

  20. M. Yadav, I. Dey, S.K. Ghosh, A comparative study on the microstructure, hardness and corrosion resistance of epoxy coated and plain rebars. Mater. Res. Expr. 9(5), 055504 (2022). https://doi.org/10.1088/2053-1591/ac6857

    Article  Google Scholar 

  21. I. Dey, P. Manna, M. Yadav, N.K. Tewary, J.K. Saha, S.K. Ghosh, Study on the perspective of mechanical properties and corrosion behaviour of stainless steel, plain and TMT rebars. Intechopen. (2021). https://doi.org/10.5722/intechopen.101388

    Article  Google Scholar 

  22. M. Tikhonova, V. Torganchuk, F. Brasche, D.A. Molodov, A. Belyakov, R. Kaibyshev, Effect of warm to hot rolling on microstructure, texture and mechanical properties of an advanced medium-Mn steel. Metall. Mater. Trans. A. 50, 4245–4256 (2019)

    Article  CAS  Google Scholar 

  23. Standard test methods for tension testing of metallic materials: ASTM E8/E8M-16A, (2016), https://doi.org/10.1520/E0008_E0008M-16A.

  24. A. Imandoust, A. Zarei-Hanzaki, M. Sabet, H.R. Abedi, An analysis of the deformation characteristics of a dual phase twinning-induced plasticity steel in warm working temperature regime. Mater. Des. 40, 556–561 (2012)

    Article  CAS  Google Scholar 

  25. A. Mohamadizadeh, A. Zarei-Hanzaki, A. Kisko, D. Porter, Ultra-fine grained structure formation through deformation-induced ferrite formation in duplex low-density steel. Mater. Des. 92, 322–329 (2016)

    Article  CAS  Google Scholar 

  26. T. Schambron, L. Chen, T. Gooch, A. Dehghan-Manshadi, E.V. Pereloma, Effect of Mo concentration on dynamic recrystallization behavior of low carbon microalloyed steels. Steel Res. Int. 84, 1191–1195 (2013)

    Article  CAS  Google Scholar 

  27. R.K. Brzuszek, P.C.M. Rodrigues, L.S. Motta, D.B. Santos, Microstructural evolution of ultra-fine-grained C-Mn steel warm rolling and intercritical annealing. Mater. Res. 5, 343–348 (2002)

    Article  CAS  Google Scholar 

  28. D.B. Santos, R.K. Bruzszek, P.C.M. Rodrigues, E.V. Pereloma, Formation of ultrafine ferrite microstructure in warm rolled and annealed C-Mn steel. Mater. Sci. Eng. 346, 189–195 (2003)

    Article  Google Scholar 

  29. M. Arribas, B. López, J.M. Rodriguez-Ibabe, Additional grain refinement in recrystallization-controlled rolling of Ti-microalloyed steels processed by near-net-shape casting technology. Mater. Sci. Eng. A. 485, 383–394 (2008)

    Article  CAS  Google Scholar 

  30. B. Hu, H. Luo, F. Yang, Recent progress in medium Mn steels made with new designing strategies, a review. J. Mater. Sci. Tech. 33, 1457–1464 (2017)

    Article  CAS  Google Scholar 

  31. B. Hu, H. Luo, A strong and ductile 7Mn steel manufactured by warm-rolling and exhibiting both transformation and twinning induced plasticity. J. Alloys Compd. 725, 684–693 (2017)

    Article  CAS  Google Scholar 

  32. J. Han, Y.K. Lee, The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Mater. 67, 354–361 (2014)

    Article  CAS  Google Scholar 

  33. A. Haldar, S. Suwas, D. Bhattacharjee, Microstructure and Texture in Steel: and Other Materials (Springer, Berlin, 2009), pp. 164–183

    Book  Google Scholar 

  34. C. Scott, B. Remy, J.-L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard, C. Curfs, Precipitation strengthening in high manganese austenitic TWIP steels. Int. J. Mat. Res. 102(5), 538–549 (2011)

    Article  CAS  Google Scholar 

  35. F. Reyes-Calderon, I. Mejıa, A. Boulaajaj, J.M. Cabrera, Effect of microalloying elements (Nb, V and Ti) on the hot flow behavior of high-Mn austenitic twinning induced plasticity (TWIP) steel. Mater. Sci. Eng. A. 560, 552–560 (2013)

    Article  CAS  Google Scholar 

  36. A. Imandoust, A. Zarei-Hanzaki, S. Heshmati-Manesh, S. Moemeni, P. Changizian, Effects of ferrite volume fraction on the tensile deformation characteristics of dual phase twinning induced plasticity steel. Mater. Des. 53, 99–105 (2014)

    Article  CAS  Google Scholar 

  37. H. Dong, X. Sun, Deformation induced ferrite transformation in low carbon steels. Curr. Opin. Solid State Mater. Sci. 9, 269–276 (2005)

    Article  CAS  Google Scholar 

  38. R. Kalsar, R.K. Ray, S. Suwas, Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in Fe-12Mn- 0.5C austenitic steels. Mater. Sci. Eng. A. 729, 385–397 (2018)

    Article  CAS  Google Scholar 

  39. R. Kalsar, S. Suwas, Deformation mechanisms during large strain deformation of high Mn TWIP steel. Mater. Sci. Eng. A. 700, 209–219 (2017)

    Article  CAS  Google Scholar 

  40. B.J. Duggan, M. Hatherly, W.B. Hutchinson, P.T. Wakefield, Deformation structures and textures in cold-rolled 70: 30 brass. Met. Sci. 12(8), 343–351 (1978)

    Article  CAS  Google Scholar 

  41. J. Hirsch, K. Lücke, Mechanism of deformation and development of rolling textures in polycrystalline fcc metals—II. Simulation and interpretation of experiments on the basis of Taylor-type theories. Acta Metall. 36(11), 2883–2904 (1988)

    Article  CAS  Google Scholar 

  42. W. Hutchinson, B. Duggan, M. Hatherly, Development of deformation texture and microstructure in cold-rolled Cu–30Zn. Met. Technol. 6(1), 398–403 (1979)

    Article  CAS  Google Scholar 

  43. S.J. Lee, J. Kim, S.N. Kane, B.C. De Cooman, On the origin of dynamic strain aging in twinning-induced plasticity steels. Acta Mater. 59, 6809–6819 (2011)

    Article  CAS  Google Scholar 

  44. Y. Tian, H.T. Wang, Q.B. Ye, Q.H. Wang, Z.D. Wang, G.D. Wang, Effect of rolling reduction below γ non-recrystallization temperature on pancaked γ, microstructure, texture and low-temperature toughness for hot rolled steel. Mater. Sci. Eng. A. 794, 139640 (2020)

    Article  CAS  Google Scholar 

  45. G. Fargas, N. Akdut, M. Anglada, A. Mateo, Microstructural evolution during industrial rolling of a duplex stainless steel. ISIJ Int. 48, 1596–1602 (2008)

    Article  CAS  Google Scholar 

  46. M. Mohammadzadeh, R. Mohammadzadeh, Effect of interstitial and substitutional alloying elements on the intrinsic stacking fault energy of nanocrystalline fcc-iron by atomistic simulation study. Appl. Phys. A. 123, 720 (2017)

    Article  CAS  Google Scholar 

  47. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Oxford University Press, New York (NY), 2005)

    Google Scholar 

  48. D.A. Huges, N. Hansen, High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 45, 3871–3886 (1997)

    Article  Google Scholar 

  49. J. Capek, M. Cernik, N. Ganev, K. Trojan, J. Nemecek, K. Kolarik, Comparison of rolling texture of austenite and ferrite phases of duplex steel with single-phase austenitic and ferritic steel. IOP Conf. Ser. Mater. Sci. Eng. 375, 012025 (2018)

    Article  Google Scholar 

  50. S. Ghosh Chowdhury, S. Das, P.K. De, Cold rolling behaviour and textural evolution in AISI 316L austenitic stainless steel. Acta Mater. 53, 3951–3959 (2005)

    Article  CAS  Google Scholar 

  51. N.P. Gurao, P. Kumar, B. Bhattacharya, A. Haldar, S. Suwas, Evolution of crystallographic texture and microstructure during cold rolling of twinning-induced plasticity (TWIP) steel: experiments and simulations. Metall. Mater. Trans. A. 43, 5193–5201 (2012)

    Article  CAS  Google Scholar 

  52. T. Waterschoot, L. Kestens, B.C. De Cooman, Hot rolling texture development in CmnCrSi dual-phase steels. Metall. Mater. Trans. A. 33, 1091–1102 (2002)

    Article  Google Scholar 

  53. G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, Tensile deformation behavior of high manganese austenitic steel: The role of grain size. Mater. Des. 31(7), 3395 (2010)

    Article  CAS  Google Scholar 

  54. L. Liu, C. Li, Y. Yang, Z. Luo, C. Song, Q. Zhai, A simple method to produce austenite-based low-density Fe–20Mn–9Al–0.75C steel by a near-rapid solidification process. Mater. Sci. Eng. A. 679, 282–291 (2017)

    Article  CAS  Google Scholar 

  55. S. Asgariv, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins. Metall. Mater. Trans. A. 28, 1781–1795 (1997)

    Article  Google Scholar 

  56. H. Gwon, J.-K. Kim, S. Shin, L. Cho, B.C. De Cooman, The effect of vanadium micro-alloying on the microstructure and the tensile behavior of TWIP steel. Mater. Sci. Eng. A. 696, 416–428 (2017)

    Article  CAS  Google Scholar 

  57. Y. Chen, X.-M. Zhang, Z.-H. Cai, Y.-Q. Wang, H. Ding, Effect of microalloying with V and Ti on the microstructure and properties of electron beam welded thick high-Mn TWIP steel plates. Mater. Sci. Eng. A. 811, 141062 (2021)

    Article  CAS  Google Scholar 

  58. G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater. Sci. Eng. A. 527(10–11), 2759–2763 (2010)

    Article  CAS  Google Scholar 

  59. N.K. Tewary, S.K. Ghosh, S. Chatterjee, Deformation behaviour of low carbon high Mn twinning-induced plasticity steel, Proc. ImechE Part C J. Mech. Eng. Sci., 1–9 (2017).

Download references

Acknowledgements

Mr. V. Rajinikanth, Senior Scientist, MTE Division of National Metallurgical Laboratory (NML), Jamshedpur, is gratefully acknowledged for providing facility to carry out the EBSD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Kumar Ghosh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V.K., Tewary, N.K., Yadav, M. et al. Effect of Intercritical Rolling on the Microstructure, Texture and Mechanical Properties of Dual Phase TWIP Steel. Metallogr. Microstruct. Anal. 11, 602–616 (2022). https://doi.org/10.1007/s13632-022-00878-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00878-3

Keywords

Navigation