Skip to main content
Log in

Evolution of Crystallographic Texture and Microstructure During Cold Rolling of Twinning-Induced Plasticity (TWIP) Steel: Experiments and Simulations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A systematic investigation of the evolution of deformation microstructure and texture of twinning-induced plasticity (TWIP) steel during cold rolling has been carried out using electron backscatter diffraction and X-ray diffraction, as well as viscoplastic self-consistent simulations. It is found that extensive twinning leads to the formation of the strong Brass {110}〈112〉 and Goss {110}〈001〉 components in TWIP steel even at low strains. At higher reduction, heterogeneous deformation contributes to further strengthening of Brass (Bs) component. The origin and stability of Bs component as well as the impact of the evolution of texture and microstructure on mechanical anisotropy is further explored using viscoplastic self-consistent simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, U.K., 1992.

  2. E.R. Parker: Materials Data Book for Engineers and Scientists, McGraw-Hill, New York, NY, 1967.

    Google Scholar 

  3. O. Grassel, L. Cruger, G. Frommyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.

    Article  CAS  Google Scholar 

  4. C. Scott, N. Guelton, S. Allain, M. Farral, and P. Cugy: Proc. M. S. & T. 05, Pittsburgh, PA, 2005.

  5. S. Asgari, El-Danf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1781–95.

  6. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and M. Guelton: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 158–62.

    Google Scholar 

  7. K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue: ISIJ Int., 1989, vol. 29, pp. 868–77.

    Article  CAS  Google Scholar 

  8. Y.G. Kim, J.M. Han, and J.S. Lee: Mater. Sci. Eng. A, 1989, vol. 114, pp. 51–59.

    Article  Google Scholar 

  9. S. Cotes, M. Sad, and A. Fernandez Guillermet: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1957–69.

    Article  CAS  Google Scholar 

  10. R.E. Scharamm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345-51.

    Google Scholar 

  11. Y. Lu, D. Molodov, and G. Gottstein: ISIJ Int., 2011, vol. 51, pp. 812–17.

    Article  Google Scholar 

  12. K. Pawlik: Phys. Status Solidi B, 1986, vol. 134, pp. 477–83.

    Article  Google Scholar 

  13. TSL-OIM v5.2 Users Manual, EDAX Inc., Mahwah, NJ.

  14. R.A. Lebensohn and C.N. Tome: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.

    Article  CAS  Google Scholar 

  15. C.N. Tomé, G.R. Canova, and U.F. Kocks: Acta Metall., 1984, vol. 32, pp. 1637–53.

    Article  Google Scholar 

  16. R.E. Smallman and D. Green: Acta Metall., 1964, vol. 12, pp. 145–54.

    Article  CAS  Google Scholar 

  17. S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants: Acta Mater., 2004, vol. 52, pp. 2005–12.

    Article  CAS  Google Scholar 

  18. L. Bracke, K. Verbeken, L. Kestens, and J. Penning: Acta Mater., 2009, vol. 57, pp. 1512–24.

    Article  CAS  Google Scholar 

  19. B. Qin: Masters Dissertation, Pohang University of Science and Technology (POSTECH), Pohang, South Korea, July 2007.

  20. G. Wasserman: Z. Metallkd., 1963, vol. 54, pp. 61–65.

    Google Scholar 

  21. J. Hirsch, K. Lücke, and M. Hatherly: Acta Metall., 1988, vol. 36, pp. 2905–27.

    Article  CAS  Google Scholar 

  22. T. Leffers and A. Grum-Jensen: Trans. AIME, 1968, vol. 242, pp. 314–19.

    CAS  Google Scholar 

  23. T. Leffers and R.K. Ray: Prog. Mater. Sci., 2009, vol. 54, pp. 351–96.

    Article  CAS  Google Scholar 

  24. Y. Zhong, F. Yin, T. Sakaguchi, K. Nagai, and K. Yang: Acta Mater., 2007, vol. 55, pp. 2747–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out as an extension to a research program funded by Tata Steel, Jamshedpur, India. The constant encouragement received from Prof. R. K. Ray and Dr. D. Bhattacharjee (both Tata Steel R&D) is gratefully acknowledged. The facilities set up at the Indian Institute of Science, Bangalore, namely, the Institute X-ray facility and Advanced Facility for Microscopy and Microanalysis (AFMM) was utilized in this study. Thanks are due to Prof. I Samajdar for providing access to the National facility for OIM at IIT Bombay and to R. Madhavan for his help in carrying out EBSD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Additional information

Manuscript submitted February 13, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurao, N.P., Kumar, P., Bhattacharya, B. et al. Evolution of Crystallographic Texture and Microstructure During Cold Rolling of Twinning-Induced Plasticity (TWIP) Steel: Experiments and Simulations. Metall Mater Trans A 43, 5193–5201 (2012). https://doi.org/10.1007/s11661-012-1346-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1346-7

Keywords

Navigation