Skip to main content
Log in

Development of RAPD and SCAR markers related to watermelon mosaic virus and zucchini yellow mosaic virus resistance in Cucurbita moschata

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Squash (Cucurbita spp.) is a major vegetable crop in the Cucurbitaceae family, and has high economic value. Squash is an important foodstuff and has possible health benefits because of its antioxidant, anti-diabetic, anti-carcinogenic, and anti-microbial potential. However, the highly virulent watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) are serious problems for squash worldwide. Single or mixed infections of WMV and ZYMV can destroy entire squash plants. Therefore, breeding squash cultivars with resistance to WMV and ZYMV is of major importance for squash cultivation. In this study, random amplified polymorphic DNA (RAPD) and sequence-characterized amplified region (SCAR) markers were developed using C. moschata lines resistant or susceptible to WMV and ZYMV. A total of 100 random primers were tested for their ability to discriminate between resistant and susceptible lines in RAPD analysis, and 4 RAPD markers (OPF10, OPF19, OPF20, and OPL19) related to WMV and ZYMV resistance were selected. Based on the RAPD results, genetic similarities were calculated and cluster analysis was conducted using unweighted pair group method with arithmetic mean (UPGMA) method. C. moschata lines were clearly segregated into resistant and susceptible lines by cluster analysis. One of the RAPD markers was successfully converted into a SCAR marker (VirSq-F19). This marker could be used as a tool for selecting WMV- and ZYMV-resistant squash in the early selection stages of a practical squash breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Agarwal, M., N. Shrivastava, and H. Padh. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27;617–631.

    Article  CAS  PubMed  Google Scholar 

  • Ardiel, G.S., T.S. Grewal, P. Deberdt, B.G. Rossnagel, and G.J. Scoles. 2002. Inheritance of resistance to covered smut in barley and development of a tightly linked SCAR marker. Theor. Appl. Genet. 104;457–464.

    Article  CAS  PubMed  Google Scholar 

  • Bolanos-Herrera, A. and A.R. Valdivia Torres. 1994. Inheritance of virus resistance in Cucurbita moschata and C. maxima (Doctoral dissertation, MS thesis. Dept of Plant Breeding, Cornell Univ., Ithaca, NY). ISO 690. Cornell University, Ithaca, NY (EUA), & CATIE, Turrialba (Costa Rica).

    Google Scholar 

  • Clough, G.H. and P.B. Hamm. 1995. Coat protein transgenic resistance to watermelon mosaic and zucchini yellows mosaic virus in squash and cantaloupe. Plant Dis. 79;1107–1109.

    Article  CAS  Google Scholar 

  • Deng, Z., S. Xiao, S. Huang, and F.G. Gmitter. 1997. Development and characterization of SCAR markers linked to the Citrus tristeza virus resistance gene from Poncirus trifoliate. Genome 40;697–704.

    Article  CAS  PubMed  Google Scholar 

  • Doyle, J.J. and J.L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12;13–15.

    Google Scholar 

  • Fletcher, J.D., A.R. Wallace, and B.T. Rogers. 2000. Potyviruses in New Zealand buttercup squash (Cucurbits maxima Duch.): Yield and quality effects of ZYMV and WMV 2 virus infections. N. Z. J. Crop Hortic. Sci. 28;17–26.

    Article  Google Scholar 

  • Fuchs, M., D.M. Tricoli, K.J. Carney, M. Schesser, J.R. McFerson, and D. Gonsalves. 1998. Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis. 82;1350–1356.

    Article  Google Scholar 

  • Gilbert-Albertini, F., H. Lecoq, M. Pitrat, and J.L. Nicolet. 1993. Resistance of Cucurbita moschata to Watermelon mosaic virus type 2 and its genetic relation to resistance to zucchini yellow mosaic virus. Euphytica 69;231–237.

    Article  Google Scholar 

  • Hadrys, H., M. Balick, and B. Schierwater. 1992. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1;55–63.

    Article  CAS  PubMed  Google Scholar 

  • Harris, K.R., K.S. Ling, W.P. Wechter, and A. Levi. 2009. Identification and utility of markers linked to the zucchini yellow mosaic virus resistance gene in watermelon. J. Am. Soc. Hortic. Sci. 134;529–534.

    Google Scholar 

  • Kim, J.S., S.H. Lee, H.S. Choi, M.K. Kim, H.R. Kwak, J.S. Kim, M. Nam, D.J. Cho, I.S. Cho, and G.S. Choi. 2012. 2007-2011 Characteristics of plant virus infections on crop samples submitted from agricultural places. Res. Plant Dis. 18;277–289.

    Article  Google Scholar 

  • Lodhi, M.A., G.N. Ye, N.F. Weeden, and B.I. Resich. 1994. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol. Biol. Rep. 12;6–13.

    Article  CAS  Google Scholar 

  • McDermott, J.M., U. Brandle, F. Dutly, U.A. Haemmerli, S. Keller, K.E. Muller, and M.S. Wolf. 1994. Genetic variation in powdery mildew of barley: Development of RAPD, SCAR and VNTR markers. Phytopathology 84;1316–1321.

    Article  CAS  Google Scholar 

  • Munger H.M. and R. Provvidenti. 1987. Inheritance of resistance to zucchini yellow mosaic virus in Cucurbita moschata. Cucurbit Genet. Coop. Rep. 10;80–81.

    Google Scholar 

  • Pachner, M and T. Lelley. 2004. Different genes for resistance to zucchini yellow mosaic virus (ZYMV) in Cucurbita moschata, p. 237–243. In: A. Lebeda and H.S. Paris (eds.). Progress in Cucurbit Genetics and Breeding Research: Proceedings of Cucurbitaceae. Palacky Univ. Olomouc, Czech Republic.

    Google Scholar 

  • Pachner, M., H.S. Paris, and T. Lelley. 2011. Genes for resistance to zucchini yellow mosaic in tropical pumpkin. J. Hered. 102;330–335.

    Article  CAS  PubMed  Google Scholar 

  • Paran, I. and R.W. Michelmore. 1993. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85;985–993.

    Article  CAS  PubMed  Google Scholar 

  • Paris, H.S., S. Cohen, Y. Burger, and R. Yoseph. 1988. Single-gene resistance to zucchini yellow mosaic virus in Cucurbita moschata. Euphytica 37;27–29.

    Article  Google Scholar 

  • Paris, H.S. and R.N. Brown. 2005. The genes of pumpkin and squash. HortScience 40;1620–1630.

    CAS  Google Scholar 

  • Park, Y., N. Katzir, Y. Brotman, J. King, F. Bertrand, and M. Havey. 2004. Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). Theor. Appl. Genet. 109;707–712.

    Article  CAS  PubMed  Google Scholar 

  • Provvidenti, R., R.W. Robinson, and H.M. Munger. 1978. Multiple virus resistance in Cucurbita species. Cucurbit Genet. Coop. 1;26–27.

    Google Scholar 

  • Staniaszek, M. and H. Habdas. 2006. RAPD technique application for intraline evaluation of androgenic carrot plants. Floia Hortic. 2;87–97

    Google Scholar 

  • Van Die, I.M., H.E. Bergmans, and W.P. Hoekstra. 1983. Transformation in Escherichia coli: studies on the role of the heat shock in induction of competence. J. Gen. Microbiol. 129;663–670.

    PubMed  Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18;6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav, M., S. Jain, R. Tomar, G.B. Prasad, and H. Yadav. 2010. Medicinal and biological potential of pumpkin: an updated review. Nutr. Res. Rev. 23;184–190.

    Article  CAS  PubMed  Google Scholar 

  • Zhang. Y. and J.R. Stommel. 2000. Development of SCAR and CAPS markers linked to the beta gene in tomato. Crop Sci. 41;1602–1608.

    Article  Google Scholar 

  • Zheng. C., R. Chang, L. Qiu, P. Chen, X. Wu, and S. Chen. 2003. Identification and characterization of a RAPD/SCAR marker linked to a resistance gene for soybean mosaic virus in soybean. Euphytica 132;199–210.

    Article  CAS  Google Scholar 

  • Zitter, T.A., D.L. Hopkins, and C.E. Thomas. 1996. Compendium of Cucurbit Diseases. APS Press, St. Paul, MN, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Doo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.K., Seo, SG., Kwon, S.B. et al. Development of RAPD and SCAR markers related to watermelon mosaic virus and zucchini yellow mosaic virus resistance in Cucurbita moschata . Hortic. Environ. Biotechnol. 57, 61–68 (2016). https://doi.org/10.1007/s13580-016-0090-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-016-0090-0

Additional key words

Navigation