Skip to main content
Log in

A novel cucumisin-like serine protease from leaf of legume Canavalia ensiformis

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Proteases are essential for plant physiology. Leguminosae species express high level of these enzymes, however, they were only reported in seeds. The present work isolated and characterized serine proteases of the aqueous extract from Canavalia ensiformis leaf (CE-A), a tropical legume. This extract was loaded on to benzamidine affinity column, and the serine protease fraction (CE-ABza) was purified 1.65-fold, yielding a total recovery of 62%. In a gelatin-SDS-PAGE, CE-ABza presented activity at 90 kDa under non-reducing, and 17, 32, and 90 kDa under reducing conditions. Peptidomimetic substrates for both trypsin and chymotrypsin as well as proteins with biotechnological relevance were digested, in distinctive levels, by CE-ABza. The maximal activity was at pH 8.5 and 9.5, and 40 °C. Protease activity was not affected at 70 °C for 24 h; however, it was completely inhibited by benzamidine and N-tosyl-L-phenylalanine chloromethylketone. Divalent cations had negative modulation on CE-ABza activity. Mass spectrometry experiments identified 11 orthologous proteases from this legume species, suggesting that CE-ABza shares similar and specific sequences especially with a serine protease, cucumisin. CE-ABza is a valuable source of very active and thermal stable serine proteases, which can be a potential candidate for biotechnological and therapeutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

Bza:

Benzamidine

CE-A:

Aqueous leaf extract from Canavalia ensiformis

CE-ABza:

Serine proteases rich fraction from Canavalia ensiformis leaf extract

E-64:

L-trans-epoxysuccinyl-leucylamido-(4-guanidino) butane

EC:

Enzyme classification

EDTA:

Ethylenediaminetetraacetic acid

SBTI:

Soy bean trypsin inhibitor

PEP:

Pepstatin

SDS-PAGE:

Sodium dodecylsulfate-polyacrylamide gel electrophoresis

L-TAME:

N-α-Tosyl-L-arginine methyl ester

BTEE:

N-Benzoyl-L-tyrosine ethyl ester

L-BAME:

N-benzoyl L-alanine methyl ester

L-BAPNA:

Nα-Benzoyl-L-arginine 4-nitroanilide hydrochloride

TPCK:

N-Tosyl-L-phenylalanine chloromethylketone

References

  • Abe Y, Shirane K, Yokosawa H, Matsushita H, Mitta M, Kato I, Ishii S (1993) Asparaginyl endopeptidase of jack bean seeds: purification, characterization, and high utility in protein sequence analysis. J Biol Chem 268:3525–3529

    CAS  PubMed  Google Scholar 

  • Barzkar N, Homaei A, Hemmati R, Patel S (2018) Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles 22:335–346

    CAS  PubMed  Google Scholar 

  • Bond JS (2019) Proteases: history, discovery, and roles in health and disease. J Biol Chem 294:1643–1651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principleof protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Brereton NJ, Gonzalez E, Marleau J, Nissim WG, Labrecque M, Joly S, Pitre FE (2016) Comparative transcriptomic approaches exploring contamination stress tolerance in Salix sp. Reveal the importance for a meta organismal de novo assembly approach for non model plants. Plant Physiol 171:3–24

    PubMed  PubMed Central  Google Scholar 

  • Cavada BS, Pinto-Junior VR, Osterne VJS, Nascimento KS (2018) ConA-like lectins: high similarity proteins as models to study structure/biological activities relationships. Int J Mol Sci 20:30

    PubMed Central  Google Scholar 

  • Chen F, Dong W, Zhang J, Guo X, Chen J, Wang Z, Lin Z, Tang H, Zhang L (2018) The sequenced angiosperm genomes and genome databases. Front Plant Sci 9:418

    PubMed  PubMed Central  Google Scholar 

  • Dahlmann B (2016) Mammalian proteasome subtypes: their diversity in structure and function. Arch Biochem Biophys 591:132–140

    CAS  PubMed  Google Scholar 

  • Defferrari MS, Demartini DR, Marcelino TB, Pinto PM, Carlini CR (2011) Insecticidal effect of Canavalia ensiformis major urease on nymphs of the milkweed bug Oncopeltus fasciatus and characterization of digestive peptidases. Insect Biochem Mol 41:388–399

    CAS  Google Scholar 

  • Demartini DR, Wlodawer A, Carlini C (2007) A comparative study of the expression of serine proteinases in quiescent seeds and in developing Canavalia ensiformis plants. J Exp Bot 58:521–532

    CAS  PubMed  Google Scholar 

  • Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, Campbell DS, Bernal-Linares M, Okuda S, Kawano S, Moritz RL, Carver JJ, Wang M, Ishihama Y, Bandeira N, Hermjakob H, Vizcaíno JA (2017) The proteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 54(D1):D1100–D1106

    Google Scholar 

  • Figueiredo J, Sousa Silva M, Figueiredo A (2018) Subtilisin-like proteases in plant defence: the past, the present and beyond. Mol Plant Pathol 19:1017–1028

    CAS  PubMed  Google Scholar 

  • Fontanini D, Jones BL (2002) SEP-1 - a subtilisin-like serine endopeptidase from germinated seeds of Hordeum vulgare L. cv. Morex Planta 215:885–893

    CAS  PubMed  Google Scholar 

  • Fukuoka Y, Schwartz LB (2007) Active monomers of human beta-tryptase have expanded substrate specificities. Int Immunopharmacol 7:1900–1908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves RN, Barbosa SDG, Silva-López RE (2016) Proteases from Canavalia ensiformis: active and thermostable enzymes with potential of application in biotechnology. Biotechnol Res Int 2016:3427098

    PubMed  PubMed Central  Google Scholar 

  • Griffin JH, Zlokovic BV, Mosnier LO (2018) Activated protein C, protease activated receptor 1, and neuroprotection. Blood 132:159–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurumallesh P, Alagu K, Ramakrishnan B, Ramakrishnan B, Muthusamy S (2019) A systematic reconsideration on proteases. Int J Biol Macromol 128:254–267

    CAS  PubMed  Google Scholar 

  • Izumi M, Nakamura S (2018) Chloroplast protein turnover: the influence of extraplastidic processes, including autophagy. Int J Mol Sci 19(3):828

    PubMed Central  Google Scholar 

  • Jashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJ (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front Plant Sci 6:584

    PubMed  PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Li Q, Yi L (2013) Commercial proteases: Present and future. FEBS Lett 587:1155–1163

    CAS  PubMed  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murayama K, Kato-Murayama M, Hosaka T, Sotokawauchi A, Yokoyama S, Arima K, Shirouzu M (2012) Crystal structure of cucumisin, a subtilisin-like endoprotease from Cucumis melo L. J Mol Biol 423:386–396

    CAS  PubMed  Google Scholar 

  • Oshikawa K, Aoki KI, Yoshino Y, Terada S (2000) Purification and characterization of a basic aminoacid-specific peptidase from seeds of jack bean (Canavalia ensiformis). Biosci Biotechnol Biochem 64:2186–2192

    CAS  PubMed  Google Scholar 

  • Pacheco JS, Silva-López RE (2012) Study of the proteolytic activity of the tropical legume Crotalaria spectabilis. Z Naturforsch C 67:495–509

    CAS  Google Scholar 

  • Palm-Espling ME, Niemiec MS, Wittung-Stafshede P (2012) Role of metal in folding and stability of copper proteins in vitro. Biochim Biophys Acta 1823:1594–1603

    CAS  PubMed  Google Scholar 

  • Paschkowsky S, Hsiao JM, Young JC, Munter LM (2019) The discovery of proteases and intramembrane proteolysis. Biochem Cell Biol 97:265–269

    CAS  PubMed  Google Scholar 

  • Pogány M, Dankó T, Kámán-Tóth E, Schwarczinger I, Bozsó (2015) Regulatory proteolysis in arabidopsis-pathogen interactions. Int J Mol Sci 16:23177–23194

    PubMed  PubMed Central  Google Scholar 

  • Rawlings ND, Barrett AJ, Tomas PD, Huang X, Bateman A, Finn RD (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46(D1):D624–632

    CAS  PubMed  Google Scholar 

  • Salguero-Linares J, Coll NS (2019) Plant proteases in the control of the hypersensitive response. J Exp Bot 70:2087–2095

    CAS  PubMed  Google Scholar 

  • Sauer J, Kaplan L (1969) Canavalia beans in American prehistory. Am Antiq 34:417–424

    Google Scholar 

  • Serge NE, Laurette Blandine MK, Kumar S, Clergé T, Vijayalakshmi M (2017) Extraction, purification, and biochemical characterization of serine protease from leaves of Abrus precatorius. Prep Biochem Biotechnol 47:1016–1024

    CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    CAS  PubMed  Google Scholar 

  • Silva-López RE, De Simone SG (2004) Leishmania (Leishmania) amazonensis: purification and characterization of a promastigote serine protease. Exp Parasitol 107:173–182

    PubMed  Google Scholar 

  • Silva-López RE, Pinto Coelho MG, De Simone SG (2005) Characterization of an extracellular serine protease of Leishmania (Leishmania) amazonensis. Parasitology 131:85–96

    PubMed  Google Scholar 

  • Silva-López RE (2009) Protease inhibitors originated from plants: useful approach for development of new drugs. Rev Fitos 4:108–119

    Google Scholar 

  • Silva-López RE, Gonçalves RN (2019) Therapeutic proteases from plants: biopharmaceuticals with multiple applications. J Appl Biotech Bioeng 6:101–109

    Google Scholar 

  • Silpa Somavarapu S, Vemula S, Reddy IB (2018) Extraction, purification and characterization of a novel cysteine protease from the latex of plant Vallaris solanacea. J Plant Biochem Biotechnol 27:186–198

    Google Scholar 

  • Sotokawauchi A, Kato-Murayama M, Murayama K, Hosaka T, Maeda I, Onjo M, Ohsawa N, Kato DI, Arima K, Shirouzu M (2017) Structural basis of cucumisin protease activity regulation by its propeptide. J Biochem 161:45–53

    CAS  PubMed  Google Scholar 

  • Vitlin Gruber A, Feiz L (2018) Rubisco assembly in the chloroplast. Front Mol Biosci 5:24

    PubMed  PubMed Central  Google Scholar 

  • Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H, (2016) 2016 update of the PRIDE database and related tools. Nucleic Acids Res 44(D1):D447–D456

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Valério Morelli for supplying C. ensiformis; the Proteomics and Mass Spectrometry Unit platform (UEMP) at the Federal University of Rio de Janeiro (UFRJ) run by Dr. Russolina Zingali for support in the use of the license Mascot Server for protein identification searches; and Augusto Vieira and Ana Lúcia Carvalho for helping with mass spectrometric analysis. Financial support was provide by the Fundacão de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ); the Fundação para o Desenvolvimento Científico e Tecnológico em Saúde (Fiotec); and the Farmanguinhos postgraduate program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Elisa da Silva-López.

Ethics declarations

Conflict of interest

They authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, R.N., Kalume, D.E., Ferrara, M.A. et al. A novel cucumisin-like serine protease from leaf of legume Canavalia ensiformis. J. Plant Biochem. Biotechnol. 30, 147–159 (2021). https://doi.org/10.1007/s13562-020-00578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-020-00578-5

Keywords

Navigation