Skip to main content
Log in

Extraction, purification and characterization of a novel cysteine protease from the latex of plant Vallaris solanacea

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plant proteases with excellent catalytical properties perform many functions in biological systems. A novel plant protease Vallaris solanacea, was identified. Its proteolytic activity was screened using the substrate casein. This protein activity was specifically inhibited by p-chloromercuribenzoate, which showed that it is a cysteine protease. Preliminary investigations such as pH effect and temperature dependence on the caseinolytic activity of crude protease were done. Stability towards temperature and pH were also evaluated. The activity curves drawn in relation to pH, temperature and stability suggested the presence of one protease in the latex of Vallaris solanacea. In the present study, separation and purification of the latex cysteine protease solanain from Vallaris solanacea to a state of near homogeneity was also done using ion exchange and size exclusion chromatography. SDS PAGE was used to determine molecular weight of the solanain (28–29 kDa). The molecular weight was confirmed as 28.9 kDa using MALDI-TOF. Purified protease was named solanain and it was further characterized. An internal tryptic fragment was identified by MALDI-TOF, and this peptide showed a homology (66% sequence similarity) with target sequence of cysteine endopeptidase from Ricinus communis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

β-ME:

β-Mercapto ethanol

TCA:

Tri chloro acetate

EDTA:

Ethylene diamino tetra acetic acid

PCMB:

p-Chloromercuribenzoate

SDS:

Sodium dodecyl sulphate

DEAE:

Diethyl amino ethyl

PMSF:

Phenyl methyl sulfonyl fluoride

FC:

Folin–Ciocalteu reagent

References

  • Abidi F, Chobert JM, Haertle T, Marzouki MN (2011) Purification and biochemical characterization of stable alkaline protease Prot-2 from Botrytis cinerea. Process Biochem 46:2301–2310

    Article  CAS  Google Scholar 

  • Afshar-Mohammadian M, Rahimi-Koldeh J, Sajedi R (2011) The comparison of protease activity and total protein in three cultivars of kiwifruit of Northern Iran during fruit development. Acta Physiol Plant 33:343–348

    Article  CAS  Google Scholar 

  • Ahmed F, Sadhu SK, Ohtsuki T, Khatun A, Ishibashi M (2010) Glycosides from Vallaris solanaceae with TRAIL-resistance-overcoming activity. Heterocycles 80:477–488

    Article  CAS  Google Scholar 

  • Aitken A, Learmonth M (2002) Performic acid oxidation. In: Walker JM (ed) The protein protocols handbook. Humana Press, Totowa, pp 457–458

    Chapter  Google Scholar 

  • Antao CM, Malcata FX (2005) Plant serine proteases: biochemical, physiological and molecular features. Plant Physiol Biochem 43:637–650

    Article  CAS  PubMed  Google Scholar 

  • Bah CSF, Carne A, McConnell MA, Mros S, Bekhit AEDA (2016) Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chem 202:458–466

    Article  CAS  PubMed  Google Scholar 

  • Benucci I, Liburdi K, Garzillo AMV, Esti M (2011) Bromelain from pineapple stem in alcoholic–acidic buffers for wine application. Food Chem 124:1349–1353

    Article  CAS  Google Scholar 

  • Bhunia B, Basak B, Mandal T, Bhattacharya P, Dey A (2013) Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa). Int J Biol Macromol 54:1–8

    Article  CAS  PubMed  Google Scholar 

  • Chassin Y, Kapri-Pardes E, Sinvany G, Arad T, Adam Z (2002) Expression and characterization of the thylakoid lumen protease DegP1 from Arabidopsis. Plant Physiol 130:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chukwuemeka NO, Anthoni AB (2010) Antifungal effects of pawpaw seed extracts and papain on post-harvest Carica papaya L. fruit rot. Afr J Agric Res 5:1531–1535

    Google Scholar 

  • Corrons MA, Bertucci JI, Liggieri CS, Lopez LMI, Bruno MA (2012) Milk clotting activity and production of bioactive peptides from whey using Maclura pomifera proteases. LWT Food Sci Technol 47:103–109

    Article  CAS  Google Scholar 

  • Corzo CA, Waliszewski KN, Welti-Chanes J (2012) Pineapple fruit bromelain affinity to different protein substrates. Food Chem 133:631–635

    Article  CAS  Google Scholar 

  • Dayanand CD (2013) Evaluation of comparative total proteolytic activity in plant lattices. Int J Life Sci Biotechnol Pharm Res 2:47–55

    CAS  Google Scholar 

  • de Castro RJS, Sato HH (2015) Biologically active peptides: processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int 74:185–198

    Article  PubMed  Google Scholar 

  • Domsalla A, Melzig MF (2008) Occurrence and properties of proteases in plant lattices. Planta Med 74:699–711

    Article  CAS  PubMed  Google Scholar 

  • Duke JA (1992) Handbook of biologically active phytochemicals and their activities. CRC Press, Boca Raton

    Google Scholar 

  • Ebata M, Yasunobu KT (1962) Chymopapain I, isolation, crystallization, and preliminary characterization. J Biol Chem 237:1086–1094

    CAS  PubMed  Google Scholar 

  • Ewing R, Poirot O, Claverie JM (1999) Comparative analysis of the Arabidopsis and rice expressed sequence tag (EST) sets. In Silico Biol 1:197–213

    CAS  PubMed  Google Scholar 

  • Gabriel O (1971) Analytical disc gel electrophoresis. In: Jakoby WB (eds) Methods in enzymology, vol 22. Academic Press, New York, London, p 565

  • Galet VM, Carballo GL, Gavara R, Muñoz PH (2012) Antimicrobial food packaging film based on the release of LAE from EVOH. Int J Food Microbiol 157:239–244. doi:10.1016/j.ijfoodmicro.05.009

    Article  Google Scholar 

  • Gonzalez-Rabade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MC (2011) Production of plant proteases in vivo and in vitro—a review. Biotechnol Adv 29:983–996

    Article  CAS  PubMed  Google Scholar 

  • Green JR (1983) On Vegetable Ferments. Ann Bot 7:133–137

    Google Scholar 

  • Hale LP (2004) Proteolytic activity and immunogenicity of oral bromelain within the gastrointestinal tract of mice. Int Immunopharmacol 4:255–264

    Article  CAS  PubMed  Google Scholar 

  • Halling KC et al (1985) Genomic cloning and characterization of a ricin gene from Ricinus communis. Nucleic Acids Res 13:8019–8033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horng-Huey K, Wen-Chun L, Cheng-Wei T, Chun-Ching L, Feng-Lin Y (2013) Prenylated flavonoids from Artocarpusaltilis: antioxidant activities and inhibitory effects on melanin production. Phytochem Int J Plant Chem Plant Biochem Mol Biol 89:78–88

    Google Scholar 

  • Jones BL (2005) Endoproteases of barley and malt. J Cereal Sci 42:139–156

    Article  CAS  Google Scholar 

  • Jucá TL, Ramos MV, Moreno FBMB, de Matos MPV, Marinho-Filho JDB, Moreira RA, de Oliveira Monteiro-Moreira AC (2013) Insights on the phytochemical profile (Cyclopeptides) and biological activities of Calotropis procera latex organic fractions. Sci World J 2013:615454. doi:10.1155/2013/615454

    Article  Google Scholar 

  • Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Somerville C (2000) The arabidopsis genome initiative analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  CAS  Google Scholar 

  • Kunitz M (1947) Crystalline soybean trypsin inhibitor II general properties. J Gen Physiol 30:291–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Madej T, Addess KJ, Fong JH, Geer LY, Geer RC et al (2012) MMDB: 3D structures and macromolecular interactions. Nucleic Acids Res 40:D461–D464. doi:10.1093/nar/gkr1162

    Article  CAS  PubMed  Google Scholar 

  • Mahajan RT, Badgujar SB (2010) Biological aspects of proteolytic enzymes: a review. J Pharm Res 3:2048–2068

    Google Scholar 

  • Mazorra-Manzano MA, Perea-Gutierrez TC, Lugo-Sanchez ME, Ramirez-Suarez JC, Torres-Llanez MJ, Gonzalez-Cordova AF, Vallejo-Cordoba B (2013) Comparison of the milk-clotting properties of three plant extracts. Food Chem 141:1902–1907

    Article  CAS  PubMed  Google Scholar 

  • Ming R et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moin K, Demchik L, Mai J, Duessing J, Peters C, Sloane BF (2000) Observing proteases in living cells. Adv Exp Med Biol 477:391–401

    Article  CAS  PubMed  Google Scholar 

  • Na BK, Shenai BR, Sijwali PS, Choe Y, Pandey KC, Singh A, Craik CS, Rosenthal PJ (2004) Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax. Biochem J 378:529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajesh R, Shivaprasad HV, Raghavendragowda CD, Nataraju A, Dhananjaya BL, Vishwanath BS (2007) Comparative study on plant latex proteases and their involvement in hemostasis: a special emphasis on clot inducing and dissolving properties. Planta Med 73:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Reisfeld RA, Lewis VJ, Williams DE (1962) Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195:281–283

    Article  CAS  PubMed  Google Scholar 

  • Renzetti S, Arendt EK (2009) Effect of protease treatment on the baking quality of brown rice bread from textural and rheological properties to biochemistry and microstructure. J Cereal Sci 50:22–28

    Article  CAS  Google Scholar 

  • Richter G, Hans PS, Friedrich D, Peter L (2002) Activation and inactivation of human factor X by proteases derived from Ficus carica. Br J Haematol 119:1042–1051

    Article  CAS  PubMed  Google Scholar 

  • Salleh AB, Razak CNA, Rahman RNZRA, Basri M (2006) Protease: introduction; new lipases and proteases. Nova Science Publishers Inc, New York, pp 23–29

    Google Scholar 

  • Schuhman HHPF, Adamska I (2005) Deg15 in Arabidopsis thaliana. FEBS J 272:B3-046P

    Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101:13951–13956

    Article  PubMed  PubMed Central  Google Scholar 

  • Suigiura M, Sasaki M (1974) Studies on proteinases from Ficus carica var. Horaishi. V. Purification and properties of a sugar containing proteinse ficin). Biochem Biophys Acta 350:38–47

    Google Scholar 

  • Sullivan GA, Calkins CR (2010) Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Sci 85:730–734

    Article  CAS  PubMed  Google Scholar 

  • Tavano OL (2013) Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B Enzym 90:1–11

    Article  CAS  Google Scholar 

  • Toro-Goyco E, Maretzki A, Matos ML (1968) Isolation, purification, and partial characterization of pinguinain, the proteolytic enyzme from Bromelia pinguin L. Arch Biochem Biophys 126:91–104

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay RK (2011) Plant latex: a natural source of pharmaceuticals and pesticides. Int J Green Pharm 5:169–180

    Article  Google Scholar 

  • Utsumi S, Damodaran S, Kinsella JE (1984) Heat induced interactions between soybean proteins: preferential association of 11S basic subunits and b-subunits of 7S. J Agric Food Chem 32:1406–1412

    Article  CAS  Google Scholar 

  • Vohra MM, Patnaik GK, Kapll RS, Anand N (1966) Chemistry and pharmacology of a glycoside of Vallaris solanacea. J Pharm Sci 55:1425–1428

    Article  CAS  Google Scholar 

  • Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-Y, Liu J-H (2010) Purification and in situ immobilization of lipase from of a mutant of Trichosporon laibacchii using aqueous two-phase systems. J Chromatogr B 878:909–912

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Biochemistry, Gandhi Institute of Technology and Management, for providing the necessary facilities to conduct our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silpa Somavarapu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

The article is entirely a study on plants. It does not include any animals or human participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somavarapu, S., Vemula, S. & Reddy, I.B. Extraction, purification and characterization of a novel cysteine protease from the latex of plant Vallaris solanacea . J. Plant Biochem. Biotechnol. 27, 186–198 (2018). https://doi.org/10.1007/s13562-017-0429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-017-0429-3

Keywords

Navigation