Skip to main content
Log in

Global optimization of a nonlinear system of differential equations involving \(\psi \)-Hilfer fractional derivatives of complex order

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, a class of cyclic (noncyclic) operators of condensing nature are defined on Banach spaces via a pair of shifting distance functions. The best proximity point (pair) results are manifested using the concept of measure of noncompactness (MNC) for the said operators. The obtained best proximity point result is used to demonstrate existence of optimum solutions of a system of differential equations involving \(\psi \)-Hilfer fractional derivatives of complex order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelis, P., Marchis, R., Martire, A.L., Oliva, I.: A mean-value approach to solve fractional differential and integral equations. Chaos, Solitons and Fractals. 138, Article ID 109895 (2020)

  2. Akhmerov, A.A., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovski, B.N.: Measure of Noncompactness and Condensing Operators. Springer, Basel AG (1992)

    Book  Google Scholar 

  3. Ambrosetti, A.: Un teorema di esistenza per Ie equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Padova. 39, 349–361 (1967)

    Google Scholar 

  4. Chaudhary, R., Reich, S.: Existence and controllability results for Hilfer fractional evolution equations. Fract. Calc. Appl. Anal. 26, 2400–2419 (2022). https://doi.org/10.1007/s13540-022-00099-z

    Article  Google Scholar 

  5. Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math. vol. 60, New York, Dekker (1980)

  6. Banas, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C. (eds.): Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness. Springer, Singapore (2017)

  7. Darbo, G.: Punti uniti in transformazioni a codominio non compatto (Italian). Rend. Sem. Math. Univ. Padova. 24, 84–92 (1955)

    Google Scholar 

  8. Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximal normal strucuture and relatively non-expansive mappings. Studia. Math. 171, 283–293 (2005)

    Article  MathSciNet  Google Scholar 

  9. Fan, K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112, 234-240 (1969)

  10. Furati, K.M., Kassim, M.D., Tatar, N.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gabeleh, M.: Minimal sets of noncyclic relatively non-expansive mappings in convex metric spaces. Fixed Point Theory. 16, 313–322 (2015)

    MathSciNet  Google Scholar 

  12. Gabeleh, M.: A characterization of proximal normal structures via proximal diametral sequences. J. Fixed Point Theory Appl. 19, 2909–2925 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gabeleh, M., Asadi, M., Karapinar, E.: Best proximity results on condensing operators via measure of noncompactness with application to integral equations. Thai J. Math. 18(3), 1519–1535 (2020)

    MathSciNet  Google Scholar 

  14. Gabeleh, M., Markin, J.: Optimum solutions for a system of differential equations via measure of noncompactness. Indag. Math. (N.S.). 29(3), 895-906 (2018)

  15. Gabeleh, M., Patel, D.K., Patle, P.R.: Darbo type best proximity point (pair) results using measure of noncompactness with application. Fixed Point Theory. 23(1), 247–266 (2022)

    Article  MathSciNet  Google Scholar 

  16. Gabeleh, M., Vetro, C.: A new extension of Darbo s fixed point theorem using relatively Meir-Keeler condensing operators. Bull. Aust. Math. Soc. 98(2), 286–297 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier, Amsterdam (2006)

    Google Scholar 

  18. Kirk, W.A., Reich, S., Veeramani, P.: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24, 851–862 (2003)

    Article  MathSciNet  Google Scholar 

  19. Nashine, H.K., Das, A.: Extension of Darbo’s fixed point theorem via shifting distance functions and its application. Nonlin. Anal.: Model. Cont. 27(2), 275-288 (2022)

  20. Nashine, H.K., Arab, R., Agarwal, R.P., De La Sen, M.: Positive solutions of fractional integral equations by the technique of measure of noncompactness. J. Inequality Appl. 2017(225), 430–442 (2017)

    MathSciNet  Google Scholar 

  21. Nashine, H.K., Arab, R., Patle, P.R., Patel, D.K.: Best proximity point results via measure of noncompactness and application. Numer. Funct. Anal. Optim. 42(4), 430–442 (2021)

    Article  MathSciNet  Google Scholar 

  22. Patle, P.R., Gabeleh, M., Rakočević, V.: Sadovskii type best proximity point (pair) theorems with an application to fractional differential equations. Mediterr. J. Math. 19, 141 (2022)

    Article  MathSciNet  Google Scholar 

  23. Patle, P.R., Patel, D.K., Arab, R.: Darbo type best proximity point results via simulation function with application. Afr. Mat. 31, 833–845 (2020)

    Article  MathSciNet  Google Scholar 

  24. Reich, S.: Fixed points of condensing functions. J. Math. Anal. Appl. 41, 460–467 (1973)

    Article  MathSciNet  Google Scholar 

  25. Sadovskii, B.N.: Limit-compact and condensing operators (Russian). Uspehi Mat. Nauk. 27, 81–146 (1972)

    MathSciNet  Google Scholar 

  26. Sousa, J., Oliveira, E.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sousa, J., Oliveira, E.: On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the \(\psi \)-Hilfer operator. J. Fixed Point Theory Appl. 20, 96 (2018)

    Article  MathSciNet  Google Scholar 

  28. Sugumaran, H., Ibrahim, R.W., Kanagarajan, K.: On \(\psi \)-Hilfer fractional differential equation with complex order. Univ. J. Math. Appl. 1(1), 33–38 (2018)

    Article  Google Scholar 

  29. Sugumaran, H., Shah, K., Kanagarajan, K.: Existence theory of fractional coupled differential equations via \(\psi \)-Hilfer fractional derivative. Random Operators and Stochastic Equations. 27, 207–212 (2019)

    Article  MathSciNet  Google Scholar 

  30. Shah, K., Ali, A., Zeb, S., Khan, A., Alqudah, M.A., Abdeljawad, T.: Study of fractional order dynamics of nonlinear mathematical model. Alex. Engin. J. 61, 11211–11224 (2022)

    Article  Google Scholar 

  31. Toledano, M.A., Benavides, T.D., Acedo, G.L.: Measures of Noncompactness in Metric Fixed Point Theory, vol. 99. Birkhauser, Basel (1997)

    Book  Google Scholar 

  32. Vivek, D., Shah, K., Kanagarajan, K.: Dynamical analysis of Hilfer-Hadamard type fractional pantograph equations via successive approximation. J. Taibah Univ. Sci. 13, 225–230 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor and anonymous referees for their helpful comments that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Rakočević.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patle, P.R., Gabeleh, M. & Rakočević, V. Global optimization of a nonlinear system of differential equations involving \(\psi \)-Hilfer fractional derivatives of complex order. Fract Calc Appl Anal (2024). https://doi.org/10.1007/s13540-024-00260-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13540-024-00260-w

Keywords

Mathematics Subject Classification

Navigation