Skip to main content
Log in

Darbo type best proximity point results via simulation function with application

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

Primarily this work intends to prove the best proximity point (pair) results using the concept of measure of noncompactness and simulation functions. The obtained results generalize and extend some present state of the art on Darbo type fixed point theorems. The main results are applied to actualize the optimum solutions of a system of nonlinear mixed Fredholm–Volterra functional integro-differential equations with local initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argoubi, H., Samet, B., Vetro, C.: Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 8, 1082–1094 (2015)

    Article  MathSciNet  Google Scholar 

  2. Banas, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60. Dekker, New York (1980)

    MATH  Google Scholar 

  3. Banas, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C.: Advanaces in Nonlinear Analysis via the Concept of Measure of Noncompactness. Springer, Singapore (2017)

    Book  Google Scholar 

  4. Berenguer, M.I., Gámez, D.L., López Linares, A.J.: Solution of systems of integro-differential equations using numerical treatment of fixed point. J. Comput. Appl. Math. (2016). https://doi.org/10.1016/j.cam.2016.11.010

    Article  MATH  Google Scholar 

  5. Chen, J., Tang, X.: Generalizations of Darbos fixed point theorem via simulation functions with application to functional integral equations. J. Comput. Appl. Math. 296, 564–575 (2016)

    Article  MathSciNet  Google Scholar 

  6. Darbo, G.: Punti uniti in transformazioni a codominio non compatto (Italian). Rend. Sem. Math. Univ. Padova 24, 84–92 (1955)

    MATH  Google Scholar 

  7. de Hierro, A.R.L., Samet, B.: \(\varphi \)-admissibility results via extended simulation functions. J. Fixed Point Theory Appl. (2016). https://doi.org/10.1007/s11784-016-0385

    Article  Google Scholar 

  8. Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximal normal strucuture and relatively nonexpansive mappings. Stud. Math. 171, 283–293 (2005)

    Article  Google Scholar 

  9. Fan, K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 112, 234–240 (1969)

    Article  MathSciNet  Google Scholar 

  10. Gabeleh, M.: A characterization of proximal normal structures via proximal diametral sequences. J. Fixed Point Theory Appl. 19, 2909–2925 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gabeleh, M., Markin, J.: Optimum solutions for a system of differential equations via measure of noncompactness. Indagationes Math. (2018). https://doi.org/10.1016/j.indag.2018.01.008

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabeleh, M., Vetro, C.: A new extension of Darbo’s fixed point theorem using relatively Meir–Keeler condensing operators. Bull. Aust. Math. Soc. (2018). https://doi.org/10.1017/S000497271800045X

    Article  MathSciNet  MATH  Google Scholar 

  13. Khojasteh, F., Shukla, S., Radenovic, S.: A new approach to the study of fixed point theorems via simulation functions. Filomat 29(6), 1189–1194 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kuratowski, K.: Sur les espaces complets. Fund. Math. 15, 301–309 (1930)

    Article  Google Scholar 

  15. Patle, P.R., Patel, D.K.: Existence of solutions of implicit integral equations via \(Z\)-contractions. Carpath. J. Math. 34(2), 239–246 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Sadovskii, B.N.: Limit-compact and condensing operators (Russian). Uspehi Mat. Nauk. 27((1)(163)), 81–146 (1972)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for useful comments and suggestions for the improvement of the paper. The second author is thankful for the support of NBHM, Department of Atomic Energy, Govt. of India (Grant No.-02011/27/2017/R&D-II/11630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepesh Kumar Patel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patle, P.R., Patel, D.K. & Arab, R. Darbo type best proximity point results via simulation function with application. Afr. Mat. 31, 833–845 (2020). https://doi.org/10.1007/s13370-020-00764-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-020-00764-7

Keywords

Mathematics Subject Classification

Navigation