Skip to main content
Log in

A characterization of proximal normal structure via proximal diametral sequences

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We introduce a concept of pointwise cyclic relatively nonexpansive mapping involving orbits to investigate the existence of best proximity points using a geometric property defined on a nonempty and convex pair of subsets of a Banach space X, called weak proximal normal structure. Examples are given to support our main conclusions. We also introduce a notion of proximal diametral sequence and establish a characterization of proximal normal structure and show that every nonempty and convex pair in uniformly convex in every direction Banach spaces has weak proximal normal structure. As an application, we give a new existence theorem for cyclic contractions in reflexive Banach spaces without strictly convexity condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abkar, A., Gabeleh, M.: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261–7268 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abkar, A., Gabeleh, M.: Proximal quasi-normal structure and a best proximity point theorem. J. Nonlinear Convex Anal. 14, 653–659 (2013)

    MATH  MathSciNet  Google Scholar 

  3. Al-Thagafi, M.A., Shahzad, N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665–3671 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brodskii, M.S., Milman, D.P.: On the center of a convex set. Dokl. Akad. Nauk. USSR 59, 837–840 (1948). (in Russian)

    MathSciNet  Google Scholar 

  5. Day, M.M., James, R.C., Swaminathan, S.: Normed linear spaces that are uniformly convex in every directions. Can. J. Math. XXIII, 1051–1059 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eldred, A.A., Kirk, W.A., Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171, 283–293 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eldred, A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001–1006 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Espínola, R.: A new approach to relatively nonexpansive mappings. Proc. Am. Math. Soc. 136, 1987–1996 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Emmanuele, G.: Asymptotic behavior of iterates of nonexpansive mappings in Banach spaces with Opial’s condition. Proc. Am. Math. Soc. 94, 103–109 (1985)

    MATH  MathSciNet  Google Scholar 

  10. Fernández-León, A.: Existence and uniqueness of best proximity points in geodesic metric spaces. Nonlinear Anal. 73, 915–921 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gabeleh, M.: Best proximity points and fixed point results for certain maps in Banach spaces. Numer. Funct. Anal. Optim. 36, 1013–1028 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gabeleh, M., Shahzad, N.: Best proximity points, cyclic Kannan maps and geodesic metric spaces. J. Fixed Point Theory Appl. (2016). doi:10.1007/s11784-015-0272-x

    MATH  MathSciNet  Google Scholar 

  13. Garkavi, A.L.: On the Cebysev center of a set in a normed space. Investigations of Contemporary Problems in the Constructive Theory of Functions, Moscow, pp. 328–331 (1961)

  14. Garkavi, A.L.: The best possible net and the best possible cross-section of a set in a normed space. Izv. Akad. Nauk SSSR Ser. Mat. 26, 87–106. Am. Math. Soc. Transi. Ser. 2 39, 111–132 (1964)

    Google Scholar 

  15. Khamsi, M.A., Kirk, W.A.: An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics. Wiley, New York (2001)

    Book  MATH  Google Scholar 

  16. Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004–1006 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. Markin, J., Shahzad, N.: Best proximity points for relatively U-continuous mappings in Banach and hyperconvex spaces. Abstr. Appl. Anal. 2013, 5 (2013)

  18. Zizler, V.: On some rotundity and smoothness properties of Banach spaces. Diss. Mat. 87, 1–33 (1971)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moosa Gabeleh.

Additional information

This research was in part supported by a Grant from IPM (No. 94470047).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabeleh, M. A characterization of proximal normal structure via proximal diametral sequences. J. Fixed Point Theory Appl. 19, 2909–2925 (2017). https://doi.org/10.1007/s11784-017-0460-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-017-0460-y

Mathematics Subject Classification

Keywords

Navigation