Skip to main content
Log in

On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the \(\psi \)-Hilfer operator

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We study the existence and uniqueness of solution of a nonlinear Cauchy problem involving the \(\psi \)-Hilfer fractional derivative. In addition, we discuss the Ulam–Hyers and Ulam–Hyers–Rassias stabilities of its solutions. A few examples are presented to illustrate the possible applications of our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, p. 207. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  2. Sousa, J., da Vanterler, C., de Oliveira, E.C.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  MathSciNet  Google Scholar 

  3. Sousa, J., da Vanterler, C., de Oliveira, E.C.: On two new operators in fractional calculus and application (2017). arXiv:1710.0371

  4. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  5. Rosa, E.C.F.A., de Oliveira, E.C.: Relaxation equations: fractional models. J. Phys. Math. https://doi.org/10.4172/2090-0902.1000146

  6. Silva Costa, F., Contharteze Grigoletto, E., Vaz Jr., J., Capelas de Oliveira, E.: Slowing-down of neutrons: a fractional model. Commun. Appl. Ind. Math. 6(2), e-538 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Sousa, J.Vanterler da C., de Oliveira, E.C., Magna, L.A.: Fractional calculus and the ESR test. AIMS Math. 2(4), 692–705 (2017)

    Article  Google Scholar 

  8. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific Publishing Company, Singapore (2011)

    Book  Google Scholar 

  9. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley-ISTE, London (2014)

    MATH  Google Scholar 

  10. Furati, K.M., Kassim, M.D.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6), 1616–1626 (2012)

    Article  MathSciNet  Google Scholar 

  11. Benchohra, M., Slimani, B.A.: Existence and uniqueness of solutions to impulsive fractional differential equations. Elecron. J. Differ. Equ. 2009, 1–11 (2009)

    MATH  Google Scholar 

  12. Benchohra, M., Lazreg, J.E.: Nonlinear fractional implicit differential equations. Commun. Appl. Anal. 17, 471–482 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Benchohra, M., Lazreg, J.E.: Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions. Rom. J. Math. Comput. Sci. 4, 60–72 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Khan, R.A., Rehman, M., Henderson, J.: Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions. Fract. Differ. Calc. 1(1), 29–43 (2011)

    Article  MathSciNet  Google Scholar 

  15. Zhou, Y.: Existence and uniqueness of solutions for a system of fractional differential equations. J. Fract. Calc. Appl. Anal. 12, 195–204 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27(4), 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  17. Ulam, S.M.: Problems in Modern Mathematics, Science edn. Wiley, New York (1940)

    MATH  Google Scholar 

  18. Ulam, S.M.: A Collection of Mathematical Problems, vol. 8. Interscience Publishers Inc, New York (1960)

    MATH  Google Scholar 

  19. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2(1), 64066 (1950)

    MathSciNet  Google Scholar 

  20. Park, C., Rassias, T.M.: Homomorphisms and derivations in proper JCQ-triples. J. Math. Anal. Appl. 337(2), 1404–1414 (2008)

    Article  MathSciNet  Google Scholar 

  21. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72(2), 297–300 (1978)

    Article  MathSciNet  Google Scholar 

  22. Wang, J., Lin, Z.: Ulam’s type stability of Hadamard type fractional integral equations. Filomat 28(7), 1323–1331 (2014)

    Article  MathSciNet  Google Scholar 

  23. Huang, J., Li, Y.: Hyers–Ulam stability of delay differential equations of first order. Math. Nachr. 289(1), 60–66 (2016)

    Article  MathSciNet  Google Scholar 

  24. Wang, J., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011(63), 1–10 (2011)

    Article  MathSciNet  Google Scholar 

  25. Ibrahim, R.W.: Generalized Ulam–Hyers stability for fractional differential equations. Int. J. Math. 23(5), 1250056 (2012)

    Article  MathSciNet  Google Scholar 

  26. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability, vol. 26. Walter de Gruyter GmbH & Co KG, London (2018)

    Book  Google Scholar 

  27. Vivek, D., Kanagarajan, K., Elsayed, E.M.: Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions. Mediterr. J. Math. 15, 15 (2018)

    Article  MathSciNet  Google Scholar 

  28. Yang, D., Wang, J.: Non-instantaneous impulsive fractional-order implicit differential equations with random effects. Stoch. Anal. Appl. 35, 719–741 (2017)

    Article  MathSciNet  Google Scholar 

  29. Kucche, K.D., Sutar, S.T.: Stability via successive approximation for nonlinear implicit fractional differential equations. Moroc. J. Pure Appl. Anal. 3, 36–54 (2017)

    Article  Google Scholar 

  30. Benchohra, M., Bouriah, S., Graef, J.R.: Nonlinear implicit differential equations of fractional order at resonance. Electron. J. Differ. Equ. 2016, 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  31. Benchohra, M., Bouriah, S., Nieto, J.J.: Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations, Revista de la Real Academia de Ciencias Exactas. Físicas y Naturales Serie A Matemáticas 112, 25–35 (2018)

    MATH  Google Scholar 

  32. Karthikeyanl, P., Arul, R.: Stability for impulsive implicit Hadamard fractional differential equations. Malaya J. Matematik 6, 28–33 (2017)

    Article  MathSciNet  Google Scholar 

  33. Abbas, S., Benchohra, M., Henderson, J.: Weak solutions for implicit fractional differential equations of hadamard type. Adv. Dyn. Syst. Appl. 11, 1–13 (2016)

    MathSciNet  Google Scholar 

  34. Bhairat, S.P., Dhaigude, D.B.: Ulam stability for system of nonlinear implicit fractional differential equations. Prog. Nonlinear Dyn. Chaos 6, 29–38 (2018)

    Google Scholar 

  35. Sutar, S.T., Kucche, K.D.: Global existence and uniqueness for implicit differential equation of arbitrary order. Fract. Differ. Calc. 5, 199–208 (2015)

    Article  MathSciNet  Google Scholar 

  36. Sousa, J., da Vanterler, C., de Oliveira, E.C.: A Gronwall inequality and the Cauchy-type problem by means of \(\psi \)-Hilfer operator (2017). arXiv:1709.03634

  37. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  38. Mittag-Leffler, G.M.: Sur la nouvelle fonction \({\mathbb{E}}_{\alpha }(x)\). C. R. Acad. Sci. Paris 137, 554–558 (1903)

    MATH  Google Scholar 

  39. Benchohra, M., Lazreg, J.E.: Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babes Bolyai Math. 62(1), 27–38 (2017)

    Article  MathSciNet  Google Scholar 

  40. Benchohra, M., Lazreg, J.E.: On stability for nonlinear implicit fractional differential equations. Le Matematiche 70(2), 49–61 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Dhage, B.C.: Global attractivity results for comparable solutions of nonlinear hybrid fractional integral equations. Differ. Equ. Appl. 6, 165–186 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Nieto, J.J., Chen, F., Zhou, Y.: Global attractivity for nonlinear fractional differential equations. Nonlinear Anal. Real World Appl. 13(1), 287–298 (2012)

    Article  MathSciNet  Google Scholar 

  43. Abbas, S., Benchohra, M., Nieto, J.: Global attractivity of solutions for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes partial integral equations. Electron. J. Qual. Theory Differ. Equ. 2012(81), 1–15 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for the suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Additional information

This work was completed with the support of our \(\hbox{\TeX}\)-pert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, J.V.d.C., de Oliveira, E.C. On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the \(\psi \)-Hilfer operator. J. Fixed Point Theory Appl. 20, 96 (2018). https://doi.org/10.1007/s11784-018-0587-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0587-5

Mathematics Subject Classification

Keywords

Navigation