Skip to main content

Advertisement

Log in

Prospect of metabolic engineering in enhanced microbial lipid production: review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The use of fossil fuels has increasingly become associated with negative influences like detrimental environmental effects. This has made renewables, especially biofuels like biodiesel, a highly attractive substitute for energy generation. The industrial and economic potential of biodiesel—a lipid-based fuel—has increased interest and research into oleaginous microorganisms to synthesise and produce lipids. Effective identification and characterisation of a vast array of oleaginous microorganisms have led them to be employed for their efficient lipogenesis capability and ability to use a wide range of synthetic and non-expensive substrates. However, low lipid production has limited the use of microbially sourced lipids for biodiesel production at the industrial level. Nevertheless, the improvement and engineering of robust strains of these microbes through metabolic engineering have increased their lipid production capacity, leading to commercialising the lipids. This review provides a comprehensive outlook into the identification of different oleaginous microorganisms and their unique characteristics, which makes them highly valuable. An insight into the lipid biosynthesis pathways is provided and the role that several enzymes and regulators play in the metabolism of lipid accumulation. A detailed outlook is provided on the broad range of metabolic engineering approaches with regard to enhanced lipid production in several oleaginous microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Güney T (2019) Renewable energy, non-renewable energy and sustainable development. Int J Sustain Dev World Ecol 26:1–9. https://doi.org/10.1080/13504509.2019.1595214

    Article  Google Scholar 

  2. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strategy Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  3. Adams S, Acheampong AO (2019) Reducing carbon emissions: the role of renewable energy and democracy. J Clean Prod 240:118245. https://doi.org/10.1016/j.jclepro.2019.118245

    Article  Google Scholar 

  4. Bórawski P, Bełdycka-Bórawska A, Szymańska EJ, Jankowski KJ, Dubis B, Dunn JW (2019) Development of renewable energy sources market and biofuels in the European Union. J Clean Prod 228:467–484. https://doi.org/10.1016/j.jclepro.2019.04.242

    Article  Google Scholar 

  5. Saidi K, Omri A (2020) The impact of renewable energy on carbon emissions and economic growth in 15 major renewable energy-consuming countries. Environ Res 186:109567. https://doi.org/10.1016/j.envres.2020.109567

    Article  Google Scholar 

  6. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35. https://doi.org/10.1007/s00253-007-1163-x

    Article  Google Scholar 

  7. Solomon BD (2010) Biofuels and sustainability. Ann N Y Acad Sci 1185:119–134

    Article  Google Scholar 

  8. Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sustain Energy Rev 73:205–214. https://doi.org/10.1016/j.rser.2017.01.070

    Article  Google Scholar 

  9. Oh Y, Hwang K, Kim C, Kim JR, Lee J (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333. https://doi.org/10.1016/j.biortech.2018.02.089

    Article  Google Scholar 

  10. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. https://doi.org/10.1016/j.rser.2009.10.003

    Article  Google Scholar 

  11. Nanda S, Rana R, Sarangi PK, Dalai AK, Kozinski JA (2018) A broad introduction to first-, second-, and third-generation biofuels. In: Sarangi P, Nanda S, Mohanty P (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-13-1307-3_1

  12. Rulli MC, Bellomi D, Cazzoli A, de Carolis G, d’Odorico P (2016) The water-land-food nexus of first-generation biofuels. Sci Rep 6:22521. https://doi.org/10.1038/srep22521

    Article  Google Scholar 

  13. Naqvi M, Yan J (2015) First-generation biofuels. In: Yan J (eds) Handbook of Clean Energy Systems. Wiley, New York. https://doi.org/10.1002/9781118991978.hces207

  14. Luque R, Herrero-Davila L, Campelo JM, Clark JH et al (2008) Biofuels: a technological perspective. Energy Environ Sci 1:542. https://doi.org/10.1039/b807094f

    Article  Google Scholar 

  15. Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energy Policy 39:4222–4234. https://doi.org/10.1016/j.enpol.2011.04.036

    Article  Google Scholar 

  16. Sadatshojaei E, Wood DA, Mowla D (2020) Third generation of biofuels exploiting microalgae. In: Inamuddin AA (eds) Sustainable Green Chemical Processes and their Allied Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-42284-4_21

  17. Rather MA, Bano P. (2019) Third generation biofuels: a promising alternate energy source. In: ul-Islam S (eds) Integrating Green Chemistry and Sustainable Engineering. Wiley, New York, pp 1–21. https://doi.org/10.1002/9781119509868.ch1

  18. Kumar G, Dharmaraje J, Arvindnarayan S, Shoban S et al (2019) A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel 251:352–367. https://doi.org/10.1016/j.fuel.2019.04.049

    Article  Google Scholar 

  19. Bhatia SK, Kim S, Yoon J, Yang Y (2017) Current status and strategies for second generation biofuel production using microbial systems. Energy Convers Manag 148:1142–1156. https://doi.org/10.1016/j.enconman.2017.06.073

    Article  Google Scholar 

  20. Das M, Patra P, Ghosh A (2020) Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renew Sustain Energy Rev 119:109562. https://doi.org/10.1016/j.rser.2019.109562

    Article  Google Scholar 

  21. Chen J, Yan S, Zhang X, Tyagi RD, Surampalli RY, Valéro JR (2018) Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel. J Waste Manag 71:164–175. https://doi.org/10.1016/j.wasman.2017.10.044

    Article  Google Scholar 

  22. Reis CER, Carvalho AKF, Bento HBS, de Castro HF (2019) Integration of microbial biodiesel and bioethanol industries through utilization of vinasse as substrate for oleaginous fungi. Bioresour Technol Rep 6:46–53. https://doi.org/10.1016/j.biteb.2018.12.009

    Article  Google Scholar 

  23. Gujjala LKS, Kumar SPJ, Talukdar B, Dash A, Kumar S, Sherpa KC, Banerjee R (2017) Biodiesel from oleaginous microbes: opportunities and challenges. Biofuels 10:1–15. https://doi.org/10.1080/17597269.2017.1402587

    Article  Google Scholar 

  24. Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R (2018) A review on microbial lipids as a potential biofuel. BioresourTechnol 259:451–460. https://doi.org/10.1016/j.biortech.2018.03.080

    Article  Google Scholar 

  25. Ko Y, Kim JW, Lee JA et al (2020) Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chem Soc Rev 49:4615–4636. https://doi.org/10.1039/D0CS00155D

    Article  Google Scholar 

  26. Jawed K, Yazdani SS, Koffas MAG (2019) Advances in the development and application of microbial consortia for metabolic engineering. Metab Eng Commun 9:e00095. https://doi.org/10.1016/j.mec.2019.e00095

    Article  Google Scholar 

  27. Liu Y, Nielsen J (2019) Recent trends in metabolic engineering of microbial chemical factories. Curr Opin Biotechnol 60:188–197. https://doi.org/10.1016/j.copbio.2019.05.010

    Article  Google Scholar 

  28. Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y (2018) Metabolic engineering of microorganisms for biofuel production. Renew Sustain Energy Rev 82:3863–3885. https://doi.org/10.1016/j.rser.2017.10.085

    Article  Google Scholar 

  29. Patel A, Mikes F, Matsakas L (2018) An overview of current pretreatment methods used to improve lipid extraction from oleaginous microorganisms. Molecules 23(7):1562. https://doi.org/10.3390/molecules23071562

    Article  Google Scholar 

  30. Zhang S, He Y, Sen B, Wang G (2020) Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour Technol 307:123234. https://doi.org/10.1016/j.biortech.2020.123234

    Article  Google Scholar 

  31. Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L (2020) An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms 8:434. https://doi.org/10.3390/microorganisms8030434

    Article  Google Scholar 

  32. Paul T, Sinharoy A, Baskaran D et al (2020) Bio-oil production from oleaginous microorganisms using hydrothermal liquefaction: a biorefinery approach. Crit Rev Environ Sci Technol 26:1–39. https://doi.org/10.1080/10643389.2020.1820803

    Article  Google Scholar 

  33. Dourou M, Aggeli D, Papanikolaou S, Aggelis G (2018) Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 102:2509–2523. https://doi.org/10.1007/s00253-018-8813-z

    Article  Google Scholar 

  34. Xue S, Chi Z, Zhang Y, Li Y, Liu G, Jiang H et al (2018) Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications. Crit Rev Biotechnol 38(7):1049–1060. https://doi.org/10.1080/07388551.2018.1428167

    Article  Google Scholar 

  35. Adrio JL (2017) Oleaginous yeasts: promising platforms for the production of oleochemicals and biofuels. Biotechnol Bioeng 114:1915–1920. https://doi.org/10.1002/bit.26337

    Article  Google Scholar 

  36. Fakas S (2017) Lipid biosynthesis in yeasts: a comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci 17:292–302. https://doi.org/10.1002/elsc.201600040

    Article  Google Scholar 

  37. Sáez-Sáez J, Wang G, Marella ER, Sudarsan S, Pastor MC, Borodina I (2020) Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production. Metab Eng 62:51–61. https://doi.org/10.1016/j.ymben.2020.08.009

    Article  Google Scholar 

  38. Takaku H, Matsuzawa T, Yaoi K, Yamazaki H (2020) Lipid metabolism of the oleaginous yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 104:6141–6148. https://doi.org/10.1007/s00253-020-10695-9

    Article  Google Scholar 

  39. Juanssilfero AB, Kahar P, Amza RL, Miyamoto N et al (2018) Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 125:695–702. https://doi.org/10.1016/j.jbiosc.2017.12.020

    Article  Google Scholar 

  40. Uprety BK, Dalli SS, Rakshit SK (2017) Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Convers Manag 135:117–128. https://doi.org/10.1016/j.enconman.2016.12.071

    Article  Google Scholar 

  41. Miao Z, Tian X, Liang W, He Y, Wang G (2020) Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production. Renew Energy 161:91–97. https://doi.org/10.1016/j.renene.2020.07.007

    Article  Google Scholar 

  42. Poontawee R, Yongmanitchai W, Limtong S (2018) Lipid production from a mixture of sugarcane top hydrolysate and biodiesel-derived crude glycerol by the oleaginous red yeast, Rhodosporidiobolus fluvialis. Process Biochem 66:150–161. https://doi.org/10.1016/j.procbio.2017.11.020

    Article  Google Scholar 

  43. Brar KK, Sarma AK, Aslam M, Polikarpov I, Chadha BS (2017) Potential of oleaginous yeast Trichosporon sp., for conversion of sugarcane bagasse hydrolysate into biodiesel. Bioresour Technol 242:161–168. https://doi.org/10.1016/j.biortech.2017.03.155

    Article  Google Scholar 

  44. Chen J, Zhang X, Tyagi RD (2020) Impact of nitrogen on the industrial feasibility of biodiesel production from lipid accumulated in oleaginous yeast with wastewater sludge and crude glycerol. Energy 217:119343. https://doi.org/10.1016/j.energy.2020.119343

    Article  Google Scholar 

  45. Deeba F, Pruthi V, Negi YS (2017) Fostering triacylglycerol accumulation in novel oleaginous yeast Cryptococcus psychrotolerans IITRFD utilizing groundnut shell for improved biodiesel production. BioresourTechnol 242:113–120. https://doi.org/10.1016/j.biortech.2017.04.001

    Article  Google Scholar 

  46. Arous F, Atitallah IB, Nasri M, Mechichi T (2017) A sustainable use of low-cost raw substrates for biodiesel production by the oleaginous yeast Wickerhamomyces anomalus. 3 Biotech 7(4):268. https://doi.org/10.1007/s13205-017-0903-6

    Article  Google Scholar 

  47. Guerfali M, Ayadi I, Sassi H, Belhassen A, Gargouri A, Belghith H (2020) Biodiesel-derived crude glycerol as alternative feedstock for single cell oil production by the oleaginous yeast Candida viswanathiiY-E4. Ind Crop Prod 145:112103. https://doi.org/10.1016/j.indcrop.2020.112103

    Article  Google Scholar 

  48. Ramírez-Castrillon M, Jaramillo-Garcia VP, Rosa PD, Landell MF et al (2017) The oleaginous yeast Meyerozyma guilliermondii BI281A as a new potential biodiesel feedstock: selection and lipid production optimization. Front Microbiol 8:1776. https://doi.org/10.3389/fmicb.2017.01776

    Article  Google Scholar 

  49. Maza DD, Viñarta SC, Su Y, Guillamón JM, Aybar MJ (2020) Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. J Biotechnol 310:21–31. https://doi.org/10.1016/j.jbiotec.2020.01.012

    Article  Google Scholar 

  50. Qian X, Zhou X, Chen L, Zhang X, Xin F et al (2020) Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Apiotrichum porosum DSM27194. Fuel 290:119811. https://doi.org/10.1016/j.fuel.2020.119811

    Article  Google Scholar 

  51. Patel A, Arora N, Mehtani J, Pruthi V, Pruthi PA (2017) Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renew Sustain Energy Rev 77:604–616. https://doi.org/10.1016/j.rser.2017.04.016

    Article  Google Scholar 

  52. Valdés G, Mendonça RT, Aggelis G (2020) Lignocellulosic biomass as a substrate for oleaginous microorganisms: a review. Appl Sci 10:7698. https://doi.org/10.3390/app10217698

    Article  Google Scholar 

  53. Thammarongtham C, Nookaew I, Vorapreeda T, Srisuk T, Land ML, Jeennor S, Laoteng K (2018) Genome characterization of oleaginous Aspergillus oryzae BCC7051: a potential fungal-based platform for lipid production. Curr Microbiol 75:57–70. https://doi.org/10.1007/s00284-017-1350-7

    Article  Google Scholar 

  54. Ali TH, El-Gamal MS, El-Ghonemy DH et al (2017) Improvement of lipid production from an oil-producing filamentous fungus, Penicillium brevicompactum NRC 829, through central composite statistical design. Ann Microbiol 67:601–613. https://doi.org/10.1007/s13213-017-1287-x

    Article  Google Scholar 

  55. Yang Y, Hu B (2019) Investigation on the cultivation conditions of a newly isolated Fusarium fungal strain for enhanced lipid production. Appl Biochem Biotechnol 187:1220–1237. https://doi.org/10.1007/s12010-018-2870-8

    Article  Google Scholar 

  56. Hashem AH, Suleiman WB, Abu-Elrish GM et al (2020) Consolidated bioprocessing of sugarcane bagasse to microbial oil by newly isolated oleaginous fungus: Mortierella wolfii. Arab J Sci Eng 46:199–211. https://doi.org/10.1007/s13369-020-05076-3

    Article  Google Scholar 

  57. Chang L, Lu H, Chen H, Tang X et al (2021) Lipid metabolism research in oleaginous fungus Mortierella alpina: current progress and future prospects. Biotechnol Adv 8:107794. https://doi.org/10.1016/j.biotechadv.2021.107794

    Article  Google Scholar 

  58. Zhang L, Zhang H, Song Y (2018) Identification and characterization of diacylglycerol acyltransferase from oleaginous fungus Mucor circinelliodes. J Agric Food Chem 66:674–681. https://doi.org/10.1021/acs.jafc.7b04295

    Article  Google Scholar 

  59. Reis CER, Valle GF, Bento HBS, Carvalho AKF, Alves TM, de Castro HF (2020) Sugarcane by-products within the biodiesel production chain: vinasse and molasses as feedstock for oleaginous fungi and conversion to ethyl esters. Fuel 277:118064. https://doi.org/10.1016/j.fuel.2020.118064

    Article  Google Scholar 

  60. Al-Hawash AB, Li S, Zhang X, Zhang X, Ma F (2018) Productivity of γ-linoleic acid by oleaginous fungus Cunninghamella echinulata using a pulsed high magnetic field. Food Biosci 21:1–7. https://doi.org/10.1016/j.fbio.2017.10.007

    Article  Google Scholar 

  61. Nouri H, Moghimi H, Rad MN, Ostovar M et al (2018) Enhanced growth and lipid production in oleaginous fungus, Sarocladium kiliense ADH17: study on fatty acid profiling and prediction of biodiesel properties. Renew Ener. https://doi.org/10.1016/j.renene.2018.11.104

    Article  Google Scholar 

  62. Hashem AH, Hasanin MS, Khalil AMA, Suleiman WB (2020) Eco-green conversion of watermelon peels to single cell oils using a unique oleaginous fungus: Lichtheimia corymbifera AH13. Waste Biomass Valori 11:5721–5732. https://doi.org/10.1007/s12649-019-00850-3

    Article  Google Scholar 

  63. Hashem AH, Suleiman WB, Abu-elreesh G, Shehabeldine AM, Khalil AMA (2020) Sustainable lipid production from oleaginous fungus Syncephalastrum racemosum using synthetic and watermelon peel waste media. Bioresour Technol Rep 12:100569. https://doi.org/10.1016/j.biteb.2020.100569

    Article  Google Scholar 

  64. Altun R, Esim N, Aykutoglu G, Baltaci MO, Adiguzel A, Taskin M (2020) Production of linoleic acid-rich lipids in molasses-based medium by oleaginous fungus Galactomyces geotrichum TS61. J Food Process Pres 44:14518. https://doi.org/10.1111/jfpp.14518

    Article  Google Scholar 

  65. Cho HU, Park JM (2018) Biodiesel production by various oleaginous microorganisms from organic wastes. BioresourTechnol 256:502–508. https://doi.org/10.1016/j.biortech.2018.02.010

    Article  Google Scholar 

  66. Liu J, Song Y, Qiu W (2017) Oleaginous microalgae Nannochloropsis as a new model for biofuel production: review & analysis. Renew Sustain Energy Rev 72:154–162. https://doi.org/10.1016/j.rser.2016.12.120

    Article  Google Scholar 

  67. Ashour M, Elshobary ME, El-Shenody R, Kamil A, Abomohra AE (2019) Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass Bioenerg 120:439–447. https://doi.org/10.1016/j.biombioe.2018.12.009

    Article  Google Scholar 

  68. Pal P, Chew K, Yen H, Lim J, Lam M, Show P (2019) Cultivation of oily microalgae for the production of third-generation biofuels. Sustainability 11:5424. https://doi.org/10.3390/su11195424

    Article  Google Scholar 

  69. Wang H, Zhang W, Noppol L, Liu T (2018) Mechanism and enhancement of lipid accumulation in filamentous oleaginous microalgae Tribonema minus under heterotrophic condition. Biotechnol Biofuels 11:328. https://doi.org/10.1186/s13068-018-1329-z

    Article  Google Scholar 

  70. Zhou W, Wang H, Chen L, Cheng W, Liu T (2017) Heterotrophy of filamentous oleaginous microalgae Tribonema minus for potential production of lipid and palmitoleic acid. Bioresour Technol 239:250–257. https://doi.org/10.1016/j.biortech.2017.05.045

    Article  Google Scholar 

  71. Ling Y, Sun L, Wang S, Lin CSK, Sun Z, Zhou Z (2019) Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochem Eng J 148:162–169. https://doi.org/10.1016/j.bej.2019.05.012

    Article  Google Scholar 

  72. Nanda M, Jaiswal KK, Kumar V, Vlaskin MS et al (2021) Micro-pollutant Pb(II) mitigation and lipid induction in oleaginous microalgae Chlorella sorokiniana UUIND6. Environ Technol Inno 23:101613. https://doi.org/10.1016/j.eti.2021.101613

    Article  Google Scholar 

  73. Xia L, Huang R, Li Y, Song S (2017) The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and DesmodesmusbijugatusXJ-231). PLoS ONE 12(10):e0186434. https://doi.org/10.1371/journal.pone.0186434

    Article  Google Scholar 

  74. Wang Z, Wen X, Ding YXY, Geng Y, Li Y (2018) Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp. WBG-1 via CO2-regulated pH in indoor and outdoor open reactors. Sci Total Environ 619 620:827–833. https://doi.org/10.1016/j.scitotenv.2017.10.127

    Article  Google Scholar 

  75. Nguyen HC, Su C, Yu Y, Huong DTM (2018) Sugarcane bagasse as a novel carbon source for heterotrophic cultivation of oleaginous microalga Schizochytrium sp. Ind Crop Prod 121:99–105. https://doi.org/10.1016/j.indcrop.2018.05.005

    Article  Google Scholar 

  76. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5. https://doi.org/10.1016/j.renene.2008.04.014

    Article  Google Scholar 

  77. Patnaik S, Saravanabhupathy S, Singh S, Davarey A, Dutta K (2022) Multi-objective optimization for biomass and lipid production by oleaginous bacteria using vegetable waste as feedstock. Environ Eng Res 27(3):210061. https://doi.org/10.4491/eer.2021.061

    Article  Google Scholar 

  78. Alvarez H, Herrero OM, Silva RA, Hernández MA, Lanfranconi MP, Villalba MS (2019) Insights into the metabolism of oleaginous Rhodococcus spp. Appl Environ Microbiol 85(18):e00498-e519. https://doi.org/10.1128/AEM.00498-19

    Article  Google Scholar 

  79. Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ (2015) Bioconversion of oxygen-pretreated kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem 17:2784–2789. https://doi.org/10.1039/c5gc00422e

    Article  Google Scholar 

  80. Zhang Q, Li Y, Xia L (2014) An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production. Biotechnol Biofuels 7:152. https://doi.org/10.1186/s13068-014-0152-4

    Article  Google Scholar 

  81. Kumar M, Thakur IS (2018) Municipal secondary sludge as carbon source for production and characterization of biodiesel from oleaginous bacteria. Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2018.09.011

    Article  Google Scholar 

  82. Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM (2019) Co-culturing of oleaginous microalgae and yeast: paradigm shift towards lipid productivity. Environ Sci Pollut Res 26:16952–16973. https://doi.org/10.1007/s11356-019-05138-6

    Article  Google Scholar 

  83. Dash A, Banerjee R (2017) Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: an integrated approach. Bioresour Technol 238:502–509. https://doi.org/10.1016/j.biortech.2017.04.039

    Article  Google Scholar 

  84. Zhang K, Zheng J, Xue D, Ren D, Lu J (2017) Effect of photoautotrophic and heteroautotrophic conditions on growth and lipid production in Chlorella vulgaris cultured in industrial wastewater with the yeast Rhodotorula glutinis. J Appl Phycol 29:2783–2788. https://doi.org/10.1007/s10811-017-1168-5

    Article  Google Scholar 

  85. Berthold DE, Shetty KG, Jayachandran K, Laughinghouse HD IV, Gantar M (2019) Enhancing algal biomass and lipid production through bacterial co-culture. Biomass Bioenerg 122:280–289. https://doi.org/10.1016/j.biombioe.2019.01.033

    Article  Google Scholar 

  86. Karim A, Islam MA, Mishra P et al (2021) Yeast and bacteria co-culture-based lipid production through bioremediation of palm oil mill effluent: a statistical optimization. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01275-6

    Article  Google Scholar 

  87. Liang M, Jiang J (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408. https://doi.org/10.1016/j.plipres.2013.02.002

    Article  Google Scholar 

  88. Qadeer S, Khalid A, Mahmood S, Anjum M, Ahmad Z (2017) Utilizing oleaginous bacteria and fungi for cleaner energy production. J Clean Prod 168:917–928. https://doi.org/10.1016/j.jclepro.2017.09.093

    Article  Google Scholar 

  89. Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu SS, Sarris D, Philippoussis A, Papanikolaou, (2018) Lipid from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 124:336–367. https://doi.org/10.1111/jam.13633

    Article  Google Scholar 

  90. Arora N, Patel A, Mehtani J et al (2019) Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. Environ Sci Pollut Res 26:16952–16973. https://doi.org/10.1007/s11356-019-05138-6

    Article  Google Scholar 

  91. Kannan N, Rao AS, Nair A (2021) Microbial production of omega-3 fatty acids: an overview. J Appl Microbiol. https://doi.org/10.1111/jam.15034

    Article  Google Scholar 

  92. Yan Q, Pfleger BF (2019) Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metab Eng. https://doi.org/10.1016/j.ymben.2019.04.009

    Article  Google Scholar 

  93. Kamineni A, Shaw J (2020) Engineering triacylglycerol production from sugars in oleaginous yeasts. CurrOpinBiotechnol 62:239–247. https://doi.org/10.1016/j.copbio.2019.12.022

    Article  Google Scholar 

  94. Jeevan Kumar SP, Avanthi A, Chintagunta AD, Gupta A, Banerjee R (2020) Oleaginous lipid: a drive to synthesize and utilize as biodiesel. In: Mitra M, Nagchaudhuri A (eds) Practices and perspectives in sustainable bioenergy. Green Energy and Technology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3965-96

  95. Ghogare R, Chen S, Xiong X (2020) Metabolic engineering of oleaginous yeast Yarrowia lipolytica for overproduction of fatty acids. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01717

    Article  Google Scholar 

  96. Yuzbasheva EY, Mostova EB, Andreeva NI et al (2017) A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism. Biotechnol Bioeng 115:433–443. https://doi.org/10.1002/bit.26402

    Article  Google Scholar 

  97. Rigouin C, Croux C, Borsenberger V et al (2018) Increasing medium chain fatty acids production in Yarrowia lipolytica by metabolic engineering. Microb Cell fact 17:142. https://doi.org/10.1186/s12934-018-0989-5

    Article  Google Scholar 

  98. Imatokene N, Verbeke J, Beopoulos A et al (2017) A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 101:4605–4616. https://doi.org/10.1007/s00253-017-8240-6

    Article  Google Scholar 

  99. Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9. https://doi.org/10.1016/j.ymben.2012.08.007

    Article  Google Scholar 

  100. Gao Q, Cao X, Huang YY et al (2018) Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization. ACS Synth Biol 7:1371–1380. https://doi.org/10.1021/acssynbio.7b00453

    Article  Google Scholar 

  101. Yu A, Zhao Y, Li J et al (2020) Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. Microbiology Open. https://doi.org/10.1002/mbo3.1051

    Article  Google Scholar 

  102. Qiao K, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35:173–177. https://doi.org/10.1038/nbt.3763

    Article  Google Scholar 

  103. Schwartz C, Cheng J, Evans R et al (2019) Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast Yarrowia lipolytica. Metab Eng 55:102–110. https://doi.org/10.1016/j.ymben.2019.06.007

    Article  Google Scholar 

  104. Li JX, Xu J, Ruan JC et al (2020) Disrupting a phospholipase A2 gene increasing lipid accumulation in the oleaginous yeast Yarrowia lipolytica. J Appl Microbiol 130:100–108. https://doi.org/10.1111/jam.14779

    Article  Google Scholar 

  105. Zhang s, Ito M, Skerker JM, Arkin AP, Rao CV, (2016) Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl Microbiol Biotechnol 100:9393–9405. https://doi.org/10.1007/s00253-016-7815-y

    Article  Google Scholar 

  106. Díaz T, Fillet S, Campoy S, Vázquez R, Viña J, Murillo J, Adrio JL (2018) Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates. Appl Microbiol Biotechnol 102:3287–3300. https://doi.org/10.1007/s00253-018-8810-2

    Article  Google Scholar 

  107. Zhang Y, Peng J, Zhao H, Shi S (2021) Engineering oleaginous yeast Rhodosporidium toruloides for overproduction of fatty acid ethyl esters. Biotechnol Biofuels 14:115. https://doi.org/10.1186/s13068-021-01965-3

    Article  Google Scholar 

  108. Shi S, Zhao H (2017) Metabolic engineering of oleaginous yeasts for production of fuels and chemicals. Front Microbiol 8:2185. https://doi.org/10.3389/fmicb.2017.02185

    Article  Google Scholar 

  109. Xiong X, Xia Y, Qiao J (2021) Editorial: physiology, application, and bioengineering of oleaginous microorganisms. Front Microbiol 12:650957. https://doi.org/10.3389/fmicb.2021.650957

    Article  Google Scholar 

  110. Donzella S, Cucchetti D, Capusoni C et al (2019) Engineering cytoplasmic acetyl-CoA synthesis decouples lipid production from nitrogen starvation in the oleaginous yeast Rhodosporidium azoricum. Microb Cell Fact 18:199. https://doi.org/10.1186/s12934-019-1250-6

    Article  Google Scholar 

  111. Quarterman JC, Slininger PJ, Hector RE, Dien BS (2018) Engineering Candida phangngensis – an oleaginous yeast from the Yarrowia clade – for enhanced detoxification of lignocellulose-derived inhibitors and lipid overproduction. FEMS Yeast Res 18:8. https://doi.org/10.1093/femsyr/foy102

    Article  Google Scholar 

  112. Chattopadhyay A, Gupta A, Maiti MK (2020) Engineering an oleaginous yeast Candida tropicalis SY005 for enhanced lipid production. Appl Microbiol Biotechnol 104:8399–8411. https://doi.org/10.1007/s00253-020-10830-6

    Article  Google Scholar 

  113. Sakamoto T, Sakuradami E, Okuda T et al (2017) Metabolic engineering of oleaginous fungus Mortierella alpinafor high production of oleic and linoleic acids. Bioresour Technol 245:1610–1615. https://doi.org/10.1016/j.biortech.2017.06.089

    Article  Google Scholar 

  114. Hao G, Chen H, Gu Z, Zhang H, Chen W, Chen YQ (2015) Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source. Microb Cell fact 12:205. https://doi.org/10.1186/s12934-015-0392-4

    Article  Google Scholar 

  115. Ling F, Tang X, Zhang H et al (2021) Role of the mitochondrial citrate-oxoglutarate carrier in lipid accumulation in the oleaginous fungus Mortierella alpina. Biotechnol Lett 43:1455–1466. https://doi.org/10.1007/s10529-021-03133-x

    Article  Google Scholar 

  116. Wang S, Chen H, Tang X et al (2020) The role of glyceraldehyde-3-phosphate dehydrogenase in NADPH supply in the oleaginous fungus Mortierella alpina. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00818

    Article  Google Scholar 

  117. Guo J, Chen H, Yang B, Zhang H, Chen W, Chen YQ (2018) The role of acyl-CoA thioesterase ACOT8I in mediating intracellular lipid metabolism in oleaginous fungus Mortierella alpina. J Ind Microbiol Biotechnol 45:281–291. https://doi.org/10.1007/s10295-018-2006-8

    Article  Google Scholar 

  118. Zan X, Tang X, Chu L, Song Y (2018) Dual functions of Lip6 and its regulation of lipid metabolism in the oleaginous fungus Mucor circinelloides. J Agric Food Chem 66:2796–2804. https://doi.org/10.1021/acs.jafc.7b06024

    Article  Google Scholar 

  119. Zan X, Cui F, Sun J, Zhou S, Song Y (2019) Novel dual-functional enzyme Lip10 catalyzes lipase and acyltransferase activities in the oleaginous fungus Mucor circinelloides. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.9b05617

    Article  Google Scholar 

  120. Han X, Song X, Li F, Lu Y (2020) Improving lipid productivity by engineering a control-knob gene in the oleaginous microalga Nannochloropsis oceanica. Metab Eng Commun 11:e00142. https://doi.org/10.1016/j.mec.2020.e00142

    Article  Google Scholar 

  121. Chen J, Liu W, Hu D et al (2016) Identification of a malonyl CoA-acyl carrier protein transacylase and its regulatory role in fatty acid biosynthesis in oleaginous microalga Nannochloropsis oceanica. Biotechnol Appl Biochem 64:620–626. https://doi.org/10.1002/bab.1531

    Article  Google Scholar 

  122. Wei H, Shi Y, Ma X et al (2017) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga. Nannochloropsis oceanica Biotechnol Biofuels 10:174. https://doi.org/10.1186/s13068-017-0858-1

    Article  Google Scholar 

  123. Wang Q, Feng Y, Lu Y et al (2021) Manipulating fatty-acid profile at unit chain-length resolution in the model industrial microalgae Nannochloropsis. Metab Eng 66:157–166. https://doi.org/10.1016/j.ymben.2021.03.015

    Article  Google Scholar 

  124. Jeon S, Koh HG, Cho JM, Kang NK, Chang YK (2021) Enhancement of lipid production in Nannochloropsis salina by overexpression of endogenous NADP-dependent malic enzyme. Algal Res 54:102218. https://doi.org/10.1016/j.algal.2021.102218

    Article  Google Scholar 

  125. Kang NK, Kim EK, Kim YU et al (2017) Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnol Biofuels 10:231. https://doi.org/10.1186/s13068-017-0919-5

    Article  Google Scholar 

  126. Klaitong P, Fa-aroonsawat S, Chungjatupornchai W (2017) Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2. Microb Cell Fact 16:61. https://doi.org/10.1186/s12934-017-0677-x

    Article  Google Scholar 

  127. Chungjatupornchai W, Areerat K, Fa-aroonsawat S (2019) Increased triacylglycerol production in oleaginous microalga Neochloris oleoabundans by overexpression of plastidial lysophosphatidic acid acyltransferase. Microb Cell Fact 18:53. https://doi.org/10.1186/s12934-019-1104-2

    Article  Google Scholar 

  128. Zou L, Balamurugan S, Zhou T et al (2019) Potentiation of concurrent expression of lipogenic genes by novel strong promoters in the oleaginous microalga Phaeodactylum tricornutum. Biotechnol Bioeng 116:3006–3015. https://doi.org/10.1002/bit.27110

    Article  Google Scholar 

  129. Li DW, Xie WH, Hao TB et al (2018) Constitutive and chloroplast targeted expression of acetyl-CoA carboxylase in oleaginous microalgae elevates fatty acid biosynthesis. Mar Biotechnol 20:566–572. https://doi.org/10.1007/s10126-018-9841-5

    Article  Google Scholar 

  130. Zhang Y, Pan Y, Ding W, Hu H, Liu J (2020) Lipid production is more than doubled by manipulating a diacylglycerol acyltransferase in algae. GCB-Bioenergy 13:185–200. https://doi.org/10.1111/gcbb.12771

    Article  Google Scholar 

  131. Xue J, Balamurugan S, Li D et al (2017) Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metab Eng 41:212–221. https://doi.org/10.1016/j.ymben.2017.04.008

    Article  Google Scholar 

  132. Donini E, Firrincieli A, Cappelletti M (2021) Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes. Folia Microbiol. https://doi.org/10.1007/s12223-021-00892-y

    Article  Google Scholar 

  133. Kim HM, Chae TU, Choi SY, Kim WJ, Lee SY (2019) Engineering of an oleaginous bacterium for the production of fatty acids and fuels. Nat Chem Biol 15:721–729. https://doi.org/10.1038/s41589-019-295-5

    Article  Google Scholar 

  134. Xu L, Wang L, Zhou XR et al (2018) Stepwise metabolic engineering of Escherichia coli to produce triacylglycerol rich in medium-chain fatty acids. Biotechnol Biofuels 11:177. https://doi.org/10.1186/s13068-018-1177-x

    Article  Google Scholar 

  135. Xiao K, Yue X, Chen W et al (2018) Metabolic engineering for enhanced medium chain omega hydroxy fatty acid production in Escherichia coli. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00139

    Article  Google Scholar 

  136. Du ZY, Alvaro J, Hyden B et al (2018) Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol Biofuels 11:174. https://doi.org/10.1186/s13068-018-1172-2

    Article  Google Scholar 

  137. Ashtiani F, Jalili H, Rahaie M, Sedighi M, Amrane A (2021) Effect of mixed culture of yeast and microalgae on acetyl-CoA carboxylase and glycerol-3-phosphate acyltransferase expression. J Biosci Bioeng 131:364–372. https://doi.org/10.1016/j.jbiosc.2020.11.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Mukhopadhyay.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R., Mukhopadhyay, M. Prospect of metabolic engineering in enhanced microbial lipid production: review. Biomass Conv. Bioref. 13, 15335–15356 (2023). https://doi.org/10.1007/s13399-021-02114-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02114-4

Keywords

Navigation