Skip to main content
Log in

Synthesis and characterization of MWCNT-supported iron phthalocyanine catalyst for the treatment of wastepaper recycling mill wastewater using microbial fuel cell

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study reported that the preparation and characterization of multiwalled carbon nanotubes supported iron phthalocyanine (FePc/MWCNTs) composite catalyst and examined the treatment efficiency using wastepaper recycling mill wastewater in a microbial fuel cell (MFC). The MWCNTs were uniformly decorated over the FePc nano particles. The obtained catalyst was characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction analysis, UV-visible spectrophotometry, energy-dispersive X-ray analysis (EDAX) Fourier-transform infrared spectroscopy (FTIR) analysis, BET analysis, Raman spectra, thermal gravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) analysis. In addition, the oxygen reduction reaction (ORR) of the catalyst has been investigated by cyclic voltammetry, linear sweep voltammetry analysis, and electrochemical impedance spectroscopy (EIS) analysis. There was an efficient removal of chemical oxygen demand (COD) with 87% and 0.650 W/m2 of power density achieved at 110 h of contact time. From this investigation, it is understood that the oxygen reduction reaction (ORR) of the FePc catalyst was improved by MWCNT supporting material. The obtained results suggested the excellent ORR activity of nanostructured FePc/MWCNTs as a promising alternative to conventional platinum-based electro catalyst for fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Birjandi N, Younesi H, Bahramifar N (2016) Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology. Appl Water Sci 6:339–348. https://doi.org/10.1007/s13201-014-0231-5

    Article  Google Scholar 

  2. Tommasi T, Lombardelli G (2017) Energy sustainability of microbial fuel cell (MFC): a case study, J. Power Sources 356:438–447. https://doi.org/10.1016/j.jpowsour.2017.03.122

    Article  Google Scholar 

  3. Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity driven and driving communities. International Society for Microbial Ecology journal 1:9–18. https://doi.org/10.1038/ismej.2007.4

    Article  Google Scholar 

  4. Mshoperi E, Fogel R, Limson J (2014) Application of carbon black and iron phthalocyanine composites in bioelectricity production at a brewery wastewater fed microbial fuel cell. Electrochemical Acta 128:311–317. https://doi.org/10.1016/j.electacta.2013.11.016

    Article  Google Scholar 

  5. Huang L, Logan BE (2008) Electricity generation and treatment of wastepaper recycling wastewater using a microbial fuel cell. Appl Microbiol Biotechnol 80:349–355. https://doi.org/10.1007/s00253-008-1546-7

    Article  Google Scholar 

  6. Geetha, K (2013), Integrated distillery wastewater treatment with simultaneous bio-energy production using microbial fuel cell, PhD thesis, Anna University, India.

  7. Zhao N, Jiang Y, Alvarado-Morales M, Treu L, Angelidaki I, Zhang Y (2018) Electricity generation and microbial communities in microbial fuel cell powered by macro algal biomass. Bio Electrochemistry 123:145–149. https://doi.org/10.1016/j.bioelechem.2018.05.002

    Article  Google Scholar 

  8. Mateo S, Cañizares P, Rodrigo MA, Fernández-Morales FJ (2019) Reproducibility and robustness of microbial fuel cells technology. J Power Sources 412:640–647. https://doi.org/10.1016/j.jpowsour.2018.12.007

    Article  Google Scholar 

  9. Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334. https://doi.org/10.1016/s0956-5663(02)00110-0

    Article  Google Scholar 

  10. Omasta TJ, Wang L, Peng X, Lewis CA, Varcoe JR, Mustain WE (2018) Importance of balancing membrane and electrode water in anion exchange membrane fuel cells, J. Power Sources 375(2018):205–213. https://doi.org/10.1016/j.jpowsour.2017.05.006

    Article  Google Scholar 

  11. Iijima S (1991) Helical micro tubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  12. Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility Nat. Nanotechnology 2:207–208. https://doi.org/10.1038/nnano.2007.89

    Article  Google Scholar 

  13. Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon N Y 39:761–770. https://doi.org/10.1016/S0008-6223(00)00187-1

  14. Chrzanowska J, Hoffman J, Małolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015) Synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Phys Status Solidi B 252(8):1860–1867. https://doi.org/10.1002/pssb.201451614

    Article  Google Scholar 

  15. Kumar M, Ando Y (2005) Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon N Y 43(3):533–540. https://doi.org/10.1016/j.carbon.2004.10.014

    Article  Google Scholar 

  16. Fan S, Chapline MG, Frankline NR et al (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514. https://doi.org/10.1126/science.283.5401.512

    Article  Google Scholar 

  17. Lee CJ, Son KH, Park J et al (2001) Low temperature growth of vertically aligned carbon nanotubes by thermal chemical vapor deposition. Chem Phys Lett 338:113–117. https://doi.org/10.1063/1.1589187

    Article  Google Scholar 

  18. Bethune DS, Klang CH, de Varies MS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic layer walls. Nature 363:605–607. https://doi.org/10.1038/363605a0

    Article  Google Scholar 

  19. Dai H, Rinzler AG, Nikolaev P (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475. https://doi.org/10.1016/S1359-0286(97)80014-9

    Article  Google Scholar 

  20. Cao YL, Yang HX, Ai XP, Xiao LF (2003) The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J Electroanal Chem 557:127–134

    Article  Google Scholar 

  21. Amade R, Vila-Costa M, Hussain S, Casamayor EO, Bertran E (2015) Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. J Mater Sci 50(3):1214–1221. https://doi.org/10.1007/s10853-014-8677-2

    Article  Google Scholar 

  22. Duteanu N, Erable B, Senthil Kumar SM, Ghangrekar MM, Scott K (2010) Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell. Bioresour Technol 101:5250–5255. https://doi.org/10.1016/J.BIORTECH.2010.01.120

    Article  Google Scholar 

  23. Srikanth, S, Pant, D, Dominguez-Benetton, X, Genne, I, Vanbroekhoven, K, Vermeiren, P & Alvarez-Gallego, Y (2016), Gas diffusion electrodes manufactured by casting evaluation as air cathodes for microbial fuel cells (MFC), Materials, pp. 601-608. https://doi.org/10.3390/ma9070601.

  24. Jourdin L, Freguia S, Donose BC, Chen J, Wallace GG, Keller J, Flexer V (2014) A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J Mater Chem 2:13093–13102. https://doi.org/10.1039/C4TA03101F

    Article  Google Scholar 

  25. Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212–1213

    Article  Google Scholar 

  26. Zhang L, Liu C, Zhuang L, Li W, Zhou S, Zhang (2009) Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens Bioelectron 24(9):2825–2829. https://doi.org/10.1016/j.bios.2009.02.010

    Article  Google Scholar 

  27. Yu EH, Cheng S, Logan BE, Scott K (2009) Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. J Appl Electrochem 39:705–711. https://doi.org/10.1007/s10800-008-9712-2

    Article  Google Scholar 

  28. Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410. https://doi.org/10.1016/j.elecom.2005.09.032

    Article  Google Scholar 

  29. Edwards S, Fogel R, Mtambanegwe K, Togo C, Laubscher R, Limson J (2012) Metallophthalocyanine/carbon nanotube hybrids: extending applications to microbial fuel cells. J Porphyrins Phthalocyanines 16:917–926

    Article  Google Scholar 

  30. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP (2008) A review of FeN/C and CoeN/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951

    Article  Google Scholar 

  31. Birry L, Mehta P, Jaouen F, Dodelet JP, Guiot SR, Tartakovsky B (2011) Application of iron-based cathode catalysts in a microbial fuel cell. Electrochim Acta 56:1505–1511. https://doi.org/10.1016/j.electacta.2010.08.019

    Article  Google Scholar 

  32. Yuan Y, Ahmed J, Kim S (2011) Polyaniline carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells. J Power Sources 196:1103–1106. https://doi.org/10.1016/j.jpowsour.2010.08.112

    Article  Google Scholar 

  33. Jiang Z, Yang W, Zhang X, Zheng H, Wang X, Liang Y (2019) Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Anno Research 12(9):2330–2334. https://doi.org/10.1007/s12274-019-2455-z

    Article  Google Scholar 

  34. Chen K, Liu K, An P, Li H, Lin Y, Hu J, Jia C, Junwei F, Li H, Liu H, Lin Z, Li W, Li J, Lu Y-R, Chan T-S, Zhang N, Liu M (2020) Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat Commun 11:4173. https://doi.org/10.1038/s41467-020-18062-y

    Article  Google Scholar 

  35. Lens PNL, Pol HL, Wilderer P, Asano T (2002) Water recycling and resource recovery in industry: analysis, technologies and implementation. IWA Publishing, London, p 677

    Google Scholar 

  36. Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82. https://doi.org/10.5772/intechopen.86995

    Article  Google Scholar 

  37. Venkatesan S, Visvalingam B, Mannathusamy G, Viswabaskaran Viswanathan A, Rao G (2018) Effect of chemical vapor deposition parameters on the diameter of multi-walled carbon nanotubes. Int Nano Lett 8:297–308. https://doi.org/10.1007/s40089-018-0252-4

    Article  Google Scholar 

  38. By Xiao-Di Wang, K. Vinodgopal and Gui-Ping Dai, (2019) Synthesis of carbon nanotubes by catalytic chemical vapor deposition Published: October 23rd https://doi.org/10.5772/intechopen.86995.

  39. Zhao F, Harnisch F, Uwe Schro¨der, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410. https://doi.org/10.1016/j.elecom.2005.09.032

    Article  Google Scholar 

  40. Logan BE, Regan JM (2006) Microbial fuel cells-challenges and applications. Environ Sci Technol 40:5172–5180. https://doi.org/10.1021/es062759

    Article  Google Scholar 

  41. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley and Sons, New York. isbn:978-0-471-04372-0

    Google Scholar 

  42. Santoro C, Gokhale R, Mecheri B, D’Epifanio A, Licoccia S, Serov A, Artyushkova K, Atanassov P (2017) Design of iron (II) pthalocyanine (FePc) derived oxygen reduction electrocatalysts for high power density microbial fuel cells. Chem Sus Chem 10:3243–3251. https://doi.org/10.1002/cssc.201700851

    Article  Google Scholar 

  43. Kruusenberg I, Matisen L, Tammeveski K (2013) Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in acid media. Int J Electrochem Sci 8:1057–1066

    Google Scholar 

  44. Zhang C, Hao R, Yin H, Liu F, Hou Y (2012) Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 4:7326–7329. https://doi.org/10.1039/C2NR32612D

    Article  Google Scholar 

  45. Liu S, Jiang X, Zhuo G (2007) In situ chemical formation of iron phthalocyanine (FePc) monolayer on the surface of magnetite nano particles. New J Chem 31:916–920

    Article  Google Scholar 

  46. Zhengping Zhang, Shaoxuan Yang, Meiling Dou, Haijing Liu, Lin Gu & Feng Wang (2016), Systematic study of the transition-metal (Fe, Co, Ni, Cu) phthalocyanine as electrocatalyst for oxygen reduction and its evaluation by DFT, RSC Advances, vol. 6, pp. 67049-67056. https://doi.org/10.1021/am100724v

  47. Tatar B, Demiroglu D (2015) Electrical properties of FePc organic semiconductor thin films obtained by CSP technique for photovoltaic applications. Mater Sci Semicond Process 31:644–650. https://doi.org/10.1016/j.mssp.2014.12.078

    Article  Google Scholar 

  48. Zhang S, Zhang H, Hua X, Chen S (2015) Tailoring molecular architectures of Fe phthalocyanine on nanocarbon supports for high oxygen reduction performance. J Mater Chem A 3:10013–10019. https://doi.org/10.1039/C5TA01400J

    Article  Google Scholar 

  49. Yubin F, Yu J, Zhang Y, Meng Y (2014) Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells. Appl Surf Sci 317:84–89. https://doi.org/10.1016/j.apsusc.2014.08.044

    Article  Google Scholar 

  50. Mukherjee B (2020) Solvothermally synthesized iron phthalocyanine nanostructure for high ORR response: a joint experimental investigation and DFT analysis. J Electrochem Soc 167:116501. https://doi.org/10.1149/1945-7111/ab9e3a

    Article  Google Scholar 

  51. Arul H, Pak K, Moon U (2018) Metallomacrocyclic-carbon complex: a study of bifunctional electrocatalytic activity for oxygen reduction and oxygen evolution reactions and their lithium-oxygen battery applications. Appl Catal B-Environ 220:288–496. https://doi.org/10.1016/j.apcatb.2017.08.064

    Article  Google Scholar 

  52. Wang X, Wang B, Zhong J, Zhao F, Han N, Huang W, Zeng M, Fan J, Li Y (2016) Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction. Nano Res 9(5):1497–1506. https://doi.org/10.1007/s12274-016-1046-5

    Article  Google Scholar 

  53. Baro M, Hussain AA, Pal AR (2014) Enhanced light sensing performance of a hybrid device developed using as-grown vertically aligned multiwalled carbon nanotubes on TCO substrates. RSC Adv 7:46399–47128

    Google Scholar 

  54. Bratashov DN (2012) Potential applications for solar photocatalysis: from environmental remediation to energy conversion. Book on Solar Radiation. https://doi.org/10.5772/34849

  55. Liu Y, Jin X-J, Dionysiou DD, Liu H, Huang Y-M (2015) Homogeneous deposition-assisted synthesis of iron–nitrogen composites on graphene as highly efficient non-precious metal electrocatalysts for microbial fuel cell power generation. J Power Sources 278:773–781. https://doi.org/10.1016/j.jpowsour.2014.12.134

    Article  Google Scholar 

  56. You SJ, Ren NQ, Zhao QL, Wang JY, Yang FL (2009) Power generation and electrochemical analysis of biocathode microbial fuel cell using graphite fiber brush as cathode material. Fuel Cells 5:588–596. https://doi.org/10.1002/fuce.200900023

    Article  Google Scholar 

  57. Yuan G, Zhang G, Zhou Y, Yang F (2015) Synergetic adsorption and catalytic oxidation performance originating from leafy graphite nanosheet anchored iron (II) phthalocyanine nano rods for efficient organic dye degradation. RSC Adv 5:26132–26140. https://doi.org/10.1039/C4RA16530F

    Article  Google Scholar 

  58. Wang X, Wang B, Zhong J, Zhao F, Han N, Huang W, Zeng M, Fan J, Li Y (2016) Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: a high-performance electrocatalyst for oxygen reduction reaction. Nano Res 9(5):1497–1506. https://doi.org/10.1021/ja106217u

    Article  Google Scholar 

  59. Zhu J, Jia N, Yang L, Dong S, Park J, Choi YM, Gong K (2014) Hetero junction nanowires having high activity and stability for the reduction of oxygen: formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs). J Colloid Interface Sci 419:61–25. https://doi.org/10.1016/j.jcis.2013.12.048

    Article  Google Scholar 

  60. Woo J, Yang SY, Sa YJ, Choi W-Y, Lee M-H, Lee H-W, Shin TJ, Kim T-Y, Joo SH (2018) Promoting oxygen reduction reaction activity of Fe–N/C electrocatalysts by silica-coating-mediated synthesis for anion-exchange membrane fuel cells. Cite this: Chem Mater 30(19):6684–6701. https://doi.org/10.1021/acs.chemmater.8b02117

    Article  Google Scholar 

  61. Praats R, Kaarik M, Kikas A, Kisand V, Jaan Aruv€alic, Paiste P, Merisalu M, Leis J, Sammelselg V, Zagal JH, Holdcroft S, Nakashima N, Tammeveski K (2020) Electrocatalytic oxygen reduction reaction on iron phthalocyanine modified carbide-derived carbon/carbon nanotube composite electrocatalysts. Electrochim Acta 334:135575. https://doi.org/10.1016/j.electacta.2019.135575

    Article  Google Scholar 

  62. Bhowmick GD, Kibena-P˜oldsepp E, Matisen L, Merisalu CM, Kook M, Kaarik M, Leis J, Sammelselg V, Ghangrekar MM, Tammeveski K (2019) Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustain Energy Fuels 3:3525–3537. https://doi.org/10.1039/C9SE00574A

    Article  Google Scholar 

  63. Hao E, Yu S, Scotta CK, BruceLogan (2009) Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources 171(2):275–281. https://doi.org/10.1016/j.jpowsour.2007.07.010

    Article  Google Scholar 

  64. Mani V, Ezhil Vilian AT, Chen S-M (2012) Graphene oxide dispersed carbon nanotube and iron phthalocyanine composite modified electrode for the electrocatalytic determination of hydrazine. Int J Electrochem Sci 7:12774–12785

    Google Scholar 

  65. Erbay C, Pu X, Choi WCM-J, Ryu Y, Hou H, Lin F, Figueiredo P, Yu C, Han A (2015) Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells. J Power Sources 280:347–354. https://doi.org/10.1016/j.jpowsour.2015.08.021

    Article  Google Scholar 

  66. Yuan Y, Zhao SKB, Jeon Y, Zhong S, Zhou S (2011) Iron phthalocyanine supported on amino-functionalised multiwalled carbon nanotubes as an alternative cathode catalyst in microbial fuel cell. Bioresour Technol 102:5849–5854. https://doi.org/10.1016/j.biortech.2011.02.115

    Article  Google Scholar 

  67. Zaid NAM, Idris NH (2016) Enhanced capacitance of hybrid layered graphene/nickel nanocomposite for super capacitors. Sci Rep 6:32082–32090. https://doi.org/10.1038/srep32082

  68. Lu WY, Li N, Chen WX, Yao YY (2009) The role of multi walled carbon nanotubes in enhancing the catalytic activity of cobalt tetra amino phthalocyanine for oxidation of conjugated dyes. Carbon 47:3337–3345. https://doi.org/10.1016/j.carbon.2009.07.055

    Article  Google Scholar 

  69. BaitaoLi XZ, XiujunWang BL, BaikunLi (2014) Hybrid binuclear-cobalt-phthalocyanine as oxygen reduction reaction catalyst in single chamber microbial fuel cells. J Power Sources 272:320–327. https://doi.org/10.1016/j.biortech.2015.05.111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Radha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radha, M., Kanmani, S., Pushpa, T.B. et al. Synthesis and characterization of MWCNT-supported iron phthalocyanine catalyst for the treatment of wastepaper recycling mill wastewater using microbial fuel cell. Biomass Conv. Bioref. 12, 5269–5281 (2022). https://doi.org/10.1007/s13399-021-01331-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01331-1

Keywords

Navigation