Skip to main content
Log in

Electrochemical reduction of oxygen with iron phthalocyanine in neutral media

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Recent interest in electricity production using microbial fuel cells makes it important to better understand O2 reduction in neutral solutions with non-precious metal catalysts. Higher O2 reduction activity was obtained using iron phthalocyanine supported on Ketjen black carbon (FePc-KJB) than with a platinum catalyst in neutral pH. At low overpotentials, a Tafel slope close to −0.06 V/dec in both acid and neutral pH suggested that the mechanism of O2 reduction on FePc is not changed with the change of pH, and the reaction is mainly controlled by FeII/FeIII redox couple. This behaviour gives us new insight into catalysis using FePc, and further supports the use of FePc as a promising catalyst for the oxygen reduction applications in neutral media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Logan B (2004) Environ Sci Technol A-Pages 38(9):60A–167A

    Google Scholar 

  2. Logan B (2005) Water Environ Res 77(3):211

    CAS  Google Scholar 

  3. Cheng S, Logan BE (2007) PNAS 104(47):18871–18873

    Article  CAS  Google Scholar 

  4. Willner I, Arad G, Katz E (1998) Bioelectrochem Bioenerg 44(2):209–214

    Article  CAS  Google Scholar 

  5. Katz E, Willner I (2003) J Am Chem Soc 125(22):6803–6813

    Article  CAS  Google Scholar 

  6. Chen T, Barton SC, Binyamin G, Gao ZQ, Zhang YC, Kim HH, Heller A (2001) J Am Chem Soc 123(35):8630–8631

    Article  CAS  Google Scholar 

  7. Jasinski R (1994) Nature 201:1212

    Article  Google Scholar 

  8. Zagal J, Paez M, Tanaka AA, Dossantos JR, Linkous CA (1992) J Electroanal Chem 339(1–2):13–30

    Article  CAS  Google Scholar 

  9. Coutanceau C, Crouigneau P, Leger JM, Lamy C (1994) J Electroanal Chem 379(1–2):389–397

    Article  Google Scholar 

  10. Dong SJ, Liu BF, Liu JL, Tabard A, Guilard R (1995) Electroanalysis 7(6):537–541

    Article  CAS  Google Scholar 

  11. Maldonado S, Stevenson KJ (2004) J Phys Chem B 108(31):11375–11383

    Article  CAS  Google Scholar 

  12. Mao LQ, Arihara K, Sotomura T, Ohsaka T (2004) Electrochim Acta 49(15):2515–2521

    Article  CAS  Google Scholar 

  13. Lalande G, Cote R, Tamizhmani G, Guay D, Dodelet JP, Dignard-Bailey L, Weng LT, Bertrand P (1995) Electrochim Acta 40(16):2635–2646

    Article  CAS  Google Scholar 

  14. Marcotte S, Villers D, Guillet N, Roue L, Dodelet JP (2004) Electrochim Acta 50(1):179–188

    Article  CAS  Google Scholar 

  15. Wiesener K, Ohms D, Neumann V, Franke R (1989) Mater Chem Phys 22(3–4):457–475

    Article  CAS  Google Scholar 

  16. Coutanceau C, El Hourch A, Crouigneau P, Leger JM, Lamy C (1995) Electrochim Acta 40(17):2739–2748

    Article  CAS  Google Scholar 

  17. Gojkovic SL, Gupta S, Savinell RF (1999) J Electroanal Chem 462(1):63–72

    Article  CAS  Google Scholar 

  18. Chu D, Jiang RZ (2002) Solid State Ionics 148(3–4):591–599

    Article  CAS  Google Scholar 

  19. Sun GQ, Wang JT, Savinell RF (1998) J Appl Electrochem 28(10):1087–1093

    Article  CAS  Google Scholar 

  20. Sun GQ, Wang JT, Savinell RF (2001) J Appl Electrochem 31:1025–1031

    Article  CAS  Google Scholar 

  21. Faubert G, Lalande G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P, Denes G (1996) Electrochim Acta 41(10):1689–1701

    Article  CAS  Google Scholar 

  22. Faubert G, Cote R, Guay D, Dodelet JP, Denes G, Bertrandc P (1998) Electrochim Acta 43(3–4):341–353

    Article  CAS  Google Scholar 

  23. Jiang RZ, Chu D (2000) J Electrochem Soc 147(12):4605–4609

    Article  CAS  Google Scholar 

  24. Lalande G, Faubert G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1996) J Power Sources 61(1–2):227–237

    Article  CAS  Google Scholar 

  25. Scott K, Shukla AK, Jackson CL, Meuleman WRA (2004) J Power Sources 126(1–2):67–75

    Article  CAS  Google Scholar 

  26. Baranton S, Coutanceau C, Roux C, Hahn F, Leger JM (2005) J Electroanal Chem 577(2):223–234

    Article  CAS  Google Scholar 

  27. Van Den Brink F, Visscher W, Barendrecht E (1983) J Electroanal Chem 157(2):305–318

    Article  Google Scholar 

  28. Van den Brink F, Visscher W, Barendrecht E (1984) J Electroanal Chem 175(1–2):279–289

    Article  Google Scholar 

  29. Van Den Brink F, Visscher W, Barendrecht E (1984) J Electroanal Chem 172(1–2):301–325

    Article  Google Scholar 

  30. Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Electrochem Commun 7(12):1405–1410

    Article  CAS  Google Scholar 

  31. Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I (2006) Environ Sci Technol 40(17):5193–5199

    Article  CAS  Google Scholar 

  32. Cheng S, Liu H, Logan BE (2006) Environ Sci Technol 40(1):364–369

    Article  CAS  Google Scholar 

  33. Yu EH, Cheng S, Scott K, Logan B (2007) J Power Sources 171(2):275–281

    Article  Google Scholar 

  34. Ladouceur M, Lalande G, Guay D, Dodelet JP, Dignardbailey L, Trudeau ML, Schulz R (1993) J Electrochem Soc 140(7):1974–1981

    Article  CAS  Google Scholar 

  35. Bezerra CWB, Zhang L, Liu HS, Lee KC, Marques ALB, Marques EP, Wang HJ, Zhang JJ (2007) J Power Sources 173(2):891–908

    Article  CAS  Google Scholar 

  36. Zagal J, Bindra P, Yeager E (1980) J Electrochem Soc 127(7):1506–1517

    Article  CAS  Google Scholar 

  37. O’Grady WE, Taylor EJ, Srinivasan S (1982) J Electroanal Chem 132:137–150

    Article  Google Scholar 

  38. Beck F (1977) J Appl Electrochem 7(3):239–245

    Article  CAS  Google Scholar 

  39. Zagal J, Paez M, Tanaka AA, dos Santos JR, Linkous CA (1992) J Electroanal Chem 339(1–2):13–30

    Google Scholar 

  40. Holze R, Vielstich W (1984) J Electrochem Soc 131(10):2298–2303

    Article  CAS  Google Scholar 

  41. Antoine O, Bultel Y, Durand R (2001) J Electroanal Chem 499(1):85–94

    Article  CAS  Google Scholar 

  42. Pyun S-I, Ryu Y-G (1996) J Power Sources 62(1):1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by an EPSRC research fellowship (Grant EP/C535456/1, for E. H. Yu), National Science Foundation Grants BES-0401885 and CBET-0730359, and the European Union for Transfer of Knowledge award on biological fuel cells (contract MTKD-CT-2004-517215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen Hao Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, E.H., Cheng, S., Logan, B.E. et al. Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. J Appl Electrochem 39, 705–711 (2009). https://doi.org/10.1007/s10800-008-9712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9712-2

Keywords

Navigation