Skip to main content

Advertisement

Log in

Holocellulase production by filamentous fungi: potential in the hydrolysis of energy cane and other sugarcane varieties

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Economic interest in sugarcane bagasse has significantly increased in recent years due to the worldwide demand for sustainable energy production. The use of sugarcane bagasse for holocellulase production has been a strategy for bioconversion of lignocellulosic residues into second-generation ethanol. The fungi secrete to the culture medium a cocktail of enzymes necessary to convert biomass into nutrients. Thus, this study aimed to analyze the production profile of holocellulases from Aspergillus and Humicola species, Trichoderma reesei RP698, and Mycothermus thermophilus grown in sugarcane bagasse, culm of energy cane, and culm of sugarcane SP80-3280. The capacity of the enzymatic pools in the hydrolysis of cell walls of these sugarcane varieties was also verified. M. thermophilus was the best producer of endoglucanase, cellobiohydrolase, β-glucosidase, xylanase, β-xylosidase, xyloglucanase, arabinanase, arabinofuranosidase, mannanase, and acetyl xylan esterase. T. reesei RP698 also produced and secreted a wide range of holocellulases to the medium. The saccharification of sugarcane bagasse, energy cane, and sugarcane SP80-3280 by the enzymatic cocktails obtained from M. thermophilus released 0.87 ± 0.05 mg.mL−1, 0.88 ± 0.07 mg.mL−1, and 1.10 ± 0.08 mg.mL−1 of reducing sugars, respectively. However, the application of T. reesei RP698 extracts showed a release of 0.85 ± 0.03 mg.mL−1, 0.40 ± 0.03 mg.mL−1, and 0.83 ± 0.03 mg.mL−1 of reducing sugars. Therefore, T. reesei RP698 and M. thermophilus showed to be good holocellulase producers, and their crude extracts presented a great capacity for the hydrolysis of the different kinds of sugarcane residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amoah J, Kahar P, Ogino C, Kondo A (2019) Bioenergy and biorefinery: feedstock, biotechnological conversion, and products. Biotechnol J 14:1800494. https://doi.org/10.1002/biot.201800494

    Article  Google Scholar 

  2. Reid WV, Ali MK, Field CB (2020) The future of bioenergy. Glob Chang Biol 26:274–286. https://doi.org/10.1111/gcb.14883

    Article  Google Scholar 

  3. Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1:15. https://doi.org/10.1186/2043-7129-1-15

    Article  Google Scholar 

  4. de Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579. https://doi.org/10.1007/s12155-012-9268-1

    Article  Google Scholar 

  5. Buckeridge MS, de Souza AP (2014) Breaking the “Glycomic Code” of cell wall polysaccharides may improve second-generation bioenergy production from biomass. BioEnergy Res 7:1065–1073. https://doi.org/10.1007/s12155-014-9460-6

    Article  Google Scholar 

  6. Buckeridge MS, Grandis A, Tavares EQP (2019) Disassembling the glycomic code of sugarcane cell walls to improve second-generation bioethanol production. In: Ray R, Ramachandran R (eds) Bioethanol prod. From food crop, 1st edn. Elsevier, pp 31–43. https://doi.org/10.1016/B978-0-12-813766-6.00002-3

  7. da Silva JA (2017) The importance of the wild cane Saccharum spontaneum for bioenergy genetic breeding. Sugar Tech 19:229–240

    Article  Google Scholar 

  8. Carvalho-Netto OV, Bressiani JA, Soriano HL, Fiori CS, Santos JM, Barbosa GV, Xavier MA, Landell MGA, Pereira GAG (2014) The potential of the energy cane as the main biomass crop for the cellulosic industry. Chem Biol Technol Agric 1:20. https://doi.org/10.1186/s40538-014-0020-2

    Article  Google Scholar 

  9. UNICA. Posição em 01/09/2018. Avaliação Quinzenal da Safra 2018/2019 da Região Centro-Sul 2018. http://www.unica.com.br/. Accessed August 5, 2019

  10. Delabona PS, Cota J, Hoffmam ZB, Paixão DAA, Farinas CS, Cairo JPLF, Lima DJ, Squina FM, Ruller R, Pradella JGC (2013) Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-L-arabinofuranosidase. Bioresour Technol 131:500–507. https://doi.org/10.1016/j.biortech.2012.12.105

    Article  Google Scholar 

  11. Pasin TM, Almeida PZ, Scarcella ASA, Infante JC, Polizeli MLTM (2020) Bioconversion of agro-industrial residues to second-generation bioethanol. In: Nanda S, Vo D-VN, Sarangi PK (eds) Biorefinery Altern. Resour. Target. Green Fuels Platf. Chem. Springer Nature, pp 23–47

  12. Polizeli MLTM, Corrêa ECP, Polizeli AM, Jorge JA (2011) Hydrolases from microorganisms used for degradation of plant cell wall and bioenergy. In: Buckeridge MS, Goldman GH (eds) Routes to Cellul. Ethanol, 1st edn. Springer, New York, pp 115–134

    Chapter  Google Scholar 

  13. Humar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  Google Scholar 

  14. Damásio ARL, Silva TM, Almeida FBR, Squina FM, Ribeiro DA, Leme AFP, Segato F, Prade RA, Jorge JA, Terenzi HF, Polizeli MLTM (2011) Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem 46:1236–1242. https://doi.org/10.1016/j.procbio.2011.01.027

    Article  Google Scholar 

  15. Goldbeck R, Gonçalves TA, Damásio ARL, Brenelli LB, Wolf LD, Paixão DAA, Rocha GJS, Squina FM (2016) Effect of hemicellulolytic enzymes to improve sugarcane bagasse saccharification and xylooligosaccharides production. J Mol Catal B Enzym 131:36–46. https://doi.org/10.1016/j.molcatb.2016.05.013

    Article  Google Scholar 

  16. Heinen PR, Betini JHA, Polizeli MLTM (2017) Xylanases. Ref Modul Life Sci:1–12. https://doi.org/10.1016/B978-0-12-809633-8.13127-9

  17. Polizeli MLTM, Vici AC, Scarcella ASA, Cereia M, Pereira MG (2016) Enzyme system from Aspergillus in current industrial uses and future applications in the production of second-generation ethanol. In: Gupta VK (ed) New Futur. Dev. Microb. Biotechnol. Bioeng, 1st edn. Elsevier, pp 127–140

  18. Segato F, Damásio ARL, de Lucas RC, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by Aspergilli. Microbiol Mol Biol Rev 78:588–613. https://doi.org/10.1128/MMBR.00019-14

    Article  Google Scholar 

  19. Li WC, Huang CH, Chen CL, Chuang YC, Tung SY, Wang TF (2017) Trichoderma reesei complete genome sequence, repeat-induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol Biofuels 10:1–20. https://doi.org/10.1186/s13068-017-0825-x

    Article  Google Scholar 

  20. Basotra N, Kaur B, Di Falco M, Tsang A, Chadha BS (2016) Mycothermus thermophilus (Syn. Scytalidium thermophilum): repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed. Bioresour Technol 222:413–421. https://doi.org/10.1016/j.biortech.2016.10.018

    Article  Google Scholar 

  21. de Oliveira TB, Gomes E, Rodrigues A (2015) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 19:31–37. https://doi.org/10.1007/s00792-014-0707-0

    Article  Google Scholar 

  22. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  23. Pagliuso D, Grandis A, Igarashi ES, Lam E, Buckeridge MS (2018) Correlation of apiose levels and growth rates in duckweeds. Front Chem 6:1–10. https://doi.org/10.3389/fchem.2018.00291

    Article  Google Scholar 

  24. Silva JCR, Salgado JCS, Vici AC, Ward RJ, Polizeli MLTM, Guimarães LHS, Furriel RPM, Jorge JA (2020) A novel Trichoderma reesei mutant RP698 with enhanced cellulase production. Braz J Microbiol 51:537–545. https://doi.org/10.1007/s42770-019-00167-2

    Article  Google Scholar 

  25. Silva JCR, Guimarães LHS, Salgado JCS, Furriel RPM, Polizeli MLTM, Rosa JC, Jorge JA (2013) Purification and biochemical characterization of glucose-cellobiose-tolerant cellulases from Scytalidium thermophilum. Folia Microbiol (Praha) 58:561–568. https://doi.org/10.1007/s12223-013-0245-7

    Article  Google Scholar 

  26. Barratt RW, Johnson GB, Ogata WN (1965) Wild-type and mutant stocks of Aspergillus nidulans. Genetics 52:233–246

    Article  Google Scholar 

  27. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9. https://doi.org/10.1016/j.bcp.2008.05.025

    Article  Google Scholar 

  28. Kondo T, Nishimura Y, Matsuyama K, Ishimaru M, Nakazawa M, Ueda M, Sakamoto T (2020) Characterization of three GH35 β-galactosidases, enzymes able to shave galactosyl residues linked to rhamnogalacturonan in pectin, from Penicillium chrysogenum 31B. Appl Microbiol Biotechnol 104:1135–1148. https://doi.org/10.1007/s00253-019-10299-y

    Article  Google Scholar 

  29. Park YB, Cosgrove DJ (2015) Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol 56:180–194. https://doi.org/10.1093/pcp/pcu204

    Article  Google Scholar 

  30. Franco HCJ, Pimenta MTB, Carvalho JLN, Magalhães PSG, Rossell CEV, Braunbeck OA, Vitti AC, Kölln OC, Rossi Neto J (2013) Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Sci Agric 70:305–312. https://doi.org/10.1590/S0103-90162013000500004

    Article  Google Scholar 

  31. Philippini RR, Martiniano SE, Chandel AK, de Carvalho W, da Silva SS (2019) Pretreatment of sugarcane bagasse from cane hybrids: effects on chemical composition and 2G sugars recovery. Waste Biomass Valorization 10:1561–1570. https://doi.org/10.1007/s12649-017-0162-0

    Article  Google Scholar 

  32. Ogata BH (2013) Caracterização das frações celulose, hemicelulose e lignina de diferentes genótipos de cana-de-açúcar e potencial de uso em biorrefinarias. Diss Mestr 109p

  33. Zhao D, Momotaz A, LaBorde C, Irey M (2020) Biomass yield and carbohydrate composition in sugarcane and energy cane grown on mineral soils. Sugar Tech 22:630–640. https://doi.org/10.1007/s12355-020-00807-0

    Article  Google Scholar 

  34. Thite VS, Nerurkar AS (2019) Valorization of sugarcane bagasse by chemical pretreatment and enzyme mediated deconstruction. Sci Rep 9:15904. https://doi.org/10.1038/s41598-019-52347-7

    Article  Google Scholar 

  35. Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488. https://doi.org/10.1128/MMBR.64.3.461-488.2000

    Article  Google Scholar 

  36. Tenkanen M, Vršanská M, Siika-Aho M, Wong DW, Puchart V, Penttilä M, Saloheimo M, Biely P (2013) Xylanase XYN IV from Trichoderma reesei showing exo- and endo-xylanase activity. FEBS J 280:285–301. https://doi.org/10.1111/febs.12069

    Article  Google Scholar 

  37. Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Leme AFP, Squina FM, Buckeridge M, Goldman GH, Oliveira JVC (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One 10:e0129275. https://doi.org/10.1371/journal.pone.0129275

    Article  Google Scholar 

  38. Heinen PR, Bauermeister A, Ribeiro LF, Messias JM, Almeida PZ, Moraes LAB, Vargas-Rechia CG, de Oliveira AHC, Ward RJ, Filho EXF, Kadowaki MK, Jorge JA, Polizeli MLTM (2018) GH11 xylanase from Aspergillus tamarii Kita: purification by one-step chromatography and xylooligosaccharides hydrolysis monitored in real-time by mass spectrometry. Int J Biol Macromol 108:291–299. https://doi.org/10.1016/j.ijbiomac.2017.11.150

    Article  Google Scholar 

  39. Paula RG, Antoniêto ACC, Ribeiro LFC, Carraro CB, Nogueira KMV, Lopes DCB, Silva AC, Zerbini MT, Pedersoli WR, Costa MN, Silva RN (2018) New genomic approaches to enhance biomass degradation by the industrial fungus Trichoderma reesei. Int J Genomics 2018:1974151

    Article  Google Scholar 

  40. Pasin TM, Salgado JCS, Scarcella ASA, de Oliveira TB, de Lucas RC, Cereia M, Rosa JC, Ward RJ, Buckeridge MS, Polizeli MLTM (2020) A halotolerant endo-1,4-β-xylanase from Aspergillus clavatus with potential application for agroindustrial residues saccharification. Appl Biochem Biotechnol 191:1111–1126. https://doi.org/10.1007/s12010-020-03232-x

    Article  Google Scholar 

  41. Vitcosque GL, Ribeiro LFC, de Lucas RC, da Silva TM, Ribeiro LF, Damasio ARL, Farinas CS, Gonçalves ACL, Segato F, Buckeridge MS, Jorge JA, Polizeli MLTM (2016) The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Appl Microbiol Biotechnol 100:9133–9144. https://doi.org/10.1007/s00253-016-7589-2

    Article  Google Scholar 

  42. Segato F, Damasio ARL, Gonçalves T, Murakami MT, Squina FM, Polizeli M, Mort AJ, Prade RA (2012) Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. Biotechnol Biofuels 5:21. https://doi.org/10.1186/1754-6834-5-21

    Article  Google Scholar 

  43. Giese EC, Pierozzi M, Dussán KJ, Chandel AK, Da Silva SS (2013) Enzymatic saccharification of acid-alkali pretreated sugarcane bagasse using commercial enzyme preparations. J Chem Technol Biotechnol 88:1266–1272. https://doi.org/10.1002/jctb.3968

    Article  Google Scholar 

  44. Goldbeck R, Damásio ARL, Gonçalves TA, Machado CB, Paixão DAA, Wolf LD, Mandelli F, Rocha GJM, Ruller R, Squina FM (2014) Development of hemicellulolytic enzyme mixtures for plant biomass deconstruction on target biotechnological applications. Appl Microbiol Biotechnol 98:8513–8525. https://doi.org/10.1007/s00253-014-5946-6

    Article  Google Scholar 

  45. Lima MS, Damasio ARL, Crnkovic PM, Pinto MR, da Silva AM, da Silva JCR, Segato F, de Lucas RC, Jorge JA, Polizeli MLTM (2016) Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment. Front Microbiol 7:583. https://doi.org/10.3389/fmicb.2016.00583

    Article  Google Scholar 

  46. Cintra LC, da Costa IC, de Oliveira ICM, Fernandes AG, Faria SP, Jesuíno RSA, Ravanal MC, Eyzaguirre J, Ramos LP, de Faria FP, Ulhoa CJ (2020) The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse. Enzym Microb Technol 133:109447

    Article  Google Scholar 

  47. Rezende CA, De Lima M, Maziero P, Deazevedo E, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54. https://doi.org/10.1186/1754-6834-4-54

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, processes 2014/50884-5, 10/52322-3, 2018/07522-6), and Conselho de Desenvolvimento Científico e Tecnológico (CNPq, process 46.5319/2014-9). This work was partially supported by the National Institute of Science and Technology of Bioethanol – INCT do Bioetanol (FAPESP/CNPq) and AG (FAPESP 2019/13936-0). MLTMP is a research productivity fellow of CNPq (process 301963/2017-7). We thank Mauro Xavier (Centro de Cana – IAC, Ribeirão Preto – SP, Brazil) and Monalisa Sampaio Carneiro (CCA – UFSCar, Araras – SP, Brazil) for providing the biomass for this research. We thank Mariana Cereia and Mauricio de Oliveira for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes Teixeira de Moraes Polizeli.

Ethics declarations

Research involving human participants and/or animals

This research did not involve human participants and/or animals.

Consent for publication

All authors have read the manuscript and have approved the submitted version.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Mesophilic and thermophilic fungi have high potential for holocellulase production.

• Sugarcane bagasse and energy cane are good inductors for enzyme production.

• Mycothermus thermophilus and Trichoderma reesei showed high holocellulase levels.

• M. thermophilus and T. reesei improved the hydrolysis efficiency on biomass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarcella, A.S.d., Pasin, T.M., de Lucas, R.C. et al. Holocellulase production by filamentous fungi: potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Conv. Bioref. 13, 1163–1174 (2023). https://doi.org/10.1007/s13399-021-01304-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01304-4

Keywords

Navigation