Skip to main content

Advertisement

Log in

Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: an integrated biorefinery approach

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Economically viable alternatives for utilizing municipal solid waste are still a major challenge for society, especially in less developed countries. A potential pathway is using the organic fraction of municipal solid waste (OFMSW) to produce energy, biofuels, organic fertilizers, and value-added chemical compounds. We evaluated an integrated biorefinery structure for the treatment of used cooking oil, pruning biomass, and organic and food residues to produce biodiesel, biogas, organic compost, 1,3-propanediol, and electrical energy at the campus of the Federal University of Pernambuco, which was considered a case study to represent a small city of Northeastern Brazil. A pilot transesterification plant, a biodigestion unit, and a compost unit were installed to process 3.3 tons daily of OFMSW produced. Additionally, research was carried out to produce 1,3-propanediol on a laboratory scale from residual glycerol. The quality of the biodiesel generated from the used cooking oil met national technical standards and the conversion of residual oil into biodiesel reached 93%. The average biogas production was 0.584 ± 0.176 Nm3 kgVS−1, with an average methane production of 50% generating up to 44 MWh of electricity per year. The organic compost produced met the quality requirements of organic fertilizers, such as maturation and nutrient contents. Glycerol treatment increased the yield of 1,3-propanediol production. Our findings demonstrate that the integrated biorefinery will lead to a reduction of US$ 80,000 in the costs of OFMSW management. More importantly, this approach generates incentives for circular economy initiatives in small municipalities in Brazil and other less developed countries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1,3-PDO:

1,3-Propanediol

1H NMR:

Nuclear magnetic proton resonance

AI:

Acidity index

ANP:

Brazilian National Agency of Petroleum

BERSO:

Experimental biorefinery of organic solid wastes

CC:

Corrosive to copper parameter

CETENE:

Northeastern Strategic Technologies Center

DAD:

Diode array detector

HRT:

Hydraulic retention time

II:

Iodine

LAC:

Combustibles Laboratory

LAFIT:

Process and Phytochemical Laboratory

MAPA:

Brazilian Ministry of Agriculture and Supply

MSW:

Municipal solid waste

MW:

Molecular weight

OFMSW:

Organic fraction of the municipal solid waste

OLR:

Organic loading rate

PNRS:

Brazilian National Policy on Solid Wastes

ROA:

Oxidation status

SI:

Saponification

UFPE:

Federal University of Pernambuco

VFA:

Volatile fatty acids

References

  1. United Nations (2019) The Sustainable Development Goals Report 2019

  2. International Energy Agency (IEA) (2019) World Energy Outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019. Accessed 25 Aug 2020

  3. Energy Information Administration (EIA) (2019) International Energy Outlook 2019 with projections to 2050

  4. Khoshnevisan B, Tabatabaei M, Tsapekos P, Rafiee S, Aghbashlo M, Lindeneg S, Angelidaki I (2020) Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renew Sust Energ Rev 117:109493. https://doi.org/10.1016/j.rser.2019.109493

    Article  Google Scholar 

  5. Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. Washington, DC

  6. Ma J, Hipel KW (2016) Exploring social dimensions of municipal solid waste management around the globe–a systematic literature review. Waste Manag 56:3–12. https://doi.org/10.1016/j.wasman.2016.06.041

    Article  Google Scholar 

  7. ABRELPE (2019) Panorama dos Resíduos Sólidos no Brasil 2018/2019. São Paulo

  8. Brasil (2010) Lei no 12.305, de 02 de agosto de 2010. Política Nacional de Resíduos Sólidos (PNRS). http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2010/Lei/L12305.htm. Accessed 25 Aug 2020

  9. ABRELPE (2011) Panorama dos resíduos solidos no Brasil 2010

  10. Brasil (2020) Plano Nacional de Resíduos Sólidos. http://consultaspublicas.mma.gov.br/planares/wp-content/uploads/2020/07/Plano-Nacional-de-Resíduos-Sólidos-Consulta-Pública.pdf. Accessed 17 Sep 2020

  11. Di Maria F, Sisani F, Contini S (2018) Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste? Appl Energy 230:1557–1572. https://doi.org/10.1016/j.apenergy.2018.09.007

    Article  Google Scholar 

  12. Khoshnevisan B, Tsapekos P, Alvarado-Morales M, Rafiee S, Tabatabaei M, Angelidaki I (2018) Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste. J Clean Prod 180:360–374. https://doi.org/10.1016/j.jclepro.2018.01.198

    Article  Google Scholar 

  13. Ranieri L, Mossa G, Pellegrino R, Digiesi S (2018) Energy recovery from the organic fraction of municipal solid waste: a real options-based facility assessment. Sustain 10:368. https://doi.org/10.3390/su10020368

    Article  Google Scholar 

  14. Silva dos Santos IF, Braz Vieira ND, de Nóbrega LGB, Barros RM, Tiago Filho GL (2018) Assessment of potential biogas production from multiple organic wastes in Brazil: impact on energy generation, use, and emissions abatement. Resour Conserv Recycl 131:54–63. https://doi.org/10.1016/j.resconrec.2017.12.012

    Article  Google Scholar 

  15. Stylianou E, Pateraki C, Ladakis D, Cruz-Fernández M, Latorre-Sánchez M, Coll C, Koutinas A (2020) Evaluation of organic fractions of municipal solid waste as renewable feedstock for succinic acid production. Biotechnol Biofuels 13:1–16. https://doi.org/10.1186/s13068-020-01708-w

    Article  Google Scholar 

  16. Lee SY, Sankaran R, Chew KW, Tan CH, Krishnamoorthy R, Chu D-T, Show P-L (2019) Waste to bioenergy: a review on the recent conversion technologies. BMC Energy 1:1–22. https://doi.org/10.1186/s42500-019-0004-7

    Article  Google Scholar 

  17. Sun L, Fujii M, Tasaki T, Dong H, Ohnishi S (2018) Improving waste to energy rate by promoting an integrated municipal solid-waste management system. Resour Conserv Recycl 136:289–296. https://doi.org/10.1016/j.resconrec.2018.05.005

    Article  Google Scholar 

  18. Pilusa TJ, Seodigeng TG (2018) Integrated waste-to-energy approach : an overview. Int J Energy Environ Eng 12:211–220. https://doi.org/10.5281/zenodo.1315995

    Article  Google Scholar 

  19. Demirbas A (2010) Biorefinery technologies for biomass upgrading. Energy Sources, Part A Recover Util Environ Eff 32:1547–1558. https://doi.org/10.1080/15567030902780394

    Article  Google Scholar 

  20. Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI, Almeelbi T, Basahi JM, Demirbas A (2017) Developing waste biorefinery in Makkah: a way forward to convert urban waste into renewable energy. Appl Energy 186:189–196. https://doi.org/10.1016/j.apenergy.2016.04.116

    Article  Google Scholar 

  21. Satchatippavarn S, Martinez-Hernandez E, Leung Pah Hang MY, Leach M, Yang A (2016) Urban biorefinery for waste processing. Chem Eng Res Des 107:81–90. https://doi.org/10.1016/j.cherd.2015.09.022

    Article  Google Scholar 

  22. Arora A, Banerjee J, Vijayaraghavan R, MacFarlane D, Patti AF (2018) Process design and techno-economic analysis of an integrated mango processing waste biorefinery. Ind Crop Prod 116:24–34. https://doi.org/10.1016/j.indcrop.2018.02.061

    Article  Google Scholar 

  23. Cárdenas-Fernández M, Bawn M, Hamley-Bennett C, Bharat PKV, Subrizi F, Suhaili N, Ward DP, Bourdin S, Dalby PA, Hailes HC, Hewitson P, Ignatova S, Kontoravdi C, Leak DJ, Shah N, Sheppard TD, Ward JM, Lye GJ (2017) An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates. Faraday Discuss 202:415–431. https://doi.org/10.1039/c7fd00094d

    Article  Google Scholar 

  24. Dong T, Knoshaug EP, Davis R, Laurens LML, Van Wychen S, Pienkos PT, Nagle N (2016) Combined algal processing: a novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Res 19:316–323. https://doi.org/10.1016/j.algal.2015.12.021

    Article  Google Scholar 

  25. Meramo S, Ojeda KA, Sánchez EL (2018) Integrated biorefinery from corn waste biomass : a case study in the North of Colombia. Int J ChemTech Res 11:33–40

    Article  Google Scholar 

  26. IBGE (2019) Estimativas da população residente nos municípios brasileiros com data de referência em 1o de julho de 2019. https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?=&t=resultados. Accessed 24 Aug 2020

  27. National Agency of Petroleum, Natural Gas and Biofuels – AN 45/2014. http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2014/agosto&item=ranp-45-2014. Accessed 21 Sep 2020

  28. Gilbard G, Vergas RM, Vielfaur EF, Schuchardt UF (1995) 1H nuclear magnetic resonance determination of the yield of the transesterification of repressed oil with methanol. J Am Oil Chem Soc 72:1239–1241

    Article  Google Scholar 

  29. Chávez, J.D. (2008) Aproveitamento biotecnológico do glicerol derivado da produção de biodiesel para a obtenção de biomassa e ribonucleotídeos. Dissertation, University of São Paulo

  30. Pflügl S, Marx H, Mattanovich D, Sauer M (2012) 1,3-propanediol production from glycerol with Lactobacillus diolivorans. Bioresour Technol 119:133–140. https://doi.org/10.1016/j.biortech.2012.05.121

    Article  Google Scholar 

  31. Silva, A. F. (2016). Avaliação do processo de compostagem com diferentes proporções de resíduos de limpeza urbana e restos de alimentos. Dissertation, Federal University of Pernambuco

  32. Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol 100(22):5444–5453. https://doi.org/10.1016/j.biortech.2008.11.027

    Article  Google Scholar 

  33. Van Soest PV, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  Google Scholar 

  34. Snyder JD, Trofymow JA (1984) A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Commun Soil Sci Plant Anal 15:587–597

    Article  Google Scholar 

  35. Empresa Brasileira de Pesquisa Agropecuária – Embrapa (1999) Manual de análises químicas de solos, plantas e fertilizantes. 1.ed. Brasília

  36. Baird R, Bridgewater L (2017) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association, Washington, D.C.

    Google Scholar 

  37. Thomas RL, Sheard RW, Moyer JR (1967) Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion 1. Agron J 59:240–243

    Article  Google Scholar 

  38. Carneiro PIB, Reda SY, Carneiro EBB (2005) Characterization of seed oils from rangpur lime (Citrus limona) and “Sicilian” lemon (Citrus limon). Annals Magnetic Resonance- Auremn 4(64–68):2005

    Google Scholar 

  39. Reda SY, Carneiro BIP (2006) Physicochemical parameters of maize oil in natura and after heating calculated by means of the proteus RMN H1 program. Ciênc. Exat. Terra. Ciênc Agrá Eng 12:31–36

    Google Scholar 

  40. ASTM D 6304-16 Standards Test Method for Determination of Water in Petroleum Products. Lubricating Oils, and Additives by Coulometric Karl Fischer Titration. Available https://www.astm.org/DATABASE.CART/HISTORICAL/D6304-16.htm

  41. NBR14448-13 Brazilian Association of Technical Standards. Lubricant oil, petroleum products and biodiesel. Determination of acid number by otentiometric titration. Available https://www.abntcatalogo.com.br/norma.aspx?ID=306418

  42. ASTM D664-18e2 Standards Test Method for Acid Number of Petroleum Products by Potentiometric Titration Available https://www.astm.org/Standards/D664

  43. NBR 14598-13 Brazilian Association of Technical Standards Determination of the Flash-point by Pensky-Martens Closed Cup. Available https://www.abntcatalogo.com.br/norma.aspx?ID=193497

  44. ASTM D 93-16a Standards Test Method for Flash Point by Pensky-Martens Closed Cup Tester. Available https://www.astm.org/DATABASE.CART/HISTORICAL/D93-16A.htm

  45. NBR 14065-13 Brazilian Association of Technical Standards Determination of density and specific gravity by digital densimeter. Available https://www.abntcatalogo.com.br/norma.aspx?ID=251994

  46. ASTM D 4052-16 Standards Test Method for Density, relative density and API gravity of liquids by digital density meter. Available https://www.astm.org/DATABASE.CART/HISTORICAL/D4052-16.htm

  47. EN14112-2016 Fat and oil derivatives. Fatty Acid Methyl Esters (FAME). Determination of oxidation stability (Accelerated oxidation test). Available https://www.en-standard.eu/bs-en-14112-2016-fat-and-oil-derivatives-fatty-acid-methyl-esters-fame-determination-of-oxidation-stability accelerated-oxidation-test/?gclid=EAIaIQobChMI67670fqs6gIVBO21Ch0cZgm-EAAYASAAEgIkkvD_BwE

  48. ASTM D7042-19e1 Standards Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer and the Calculation of Kinematic Viscosity Available https://www.astm.org/Standards/D7042.htm

  49. Andrade MMM, Alencar BRA, Leite NP, Firmo ALB, Dutra ED, Sampaio EVSB, Menezes RSC (2020) Biogas production from co-digestion of different proportions of food waste and fresh bovine manure. Biomass Convers Bioref. https://doi.org/10.1007/s13399-020-00833-8

  50. Castejón D, Herrera A, Heras A, Cambereo I, Mateos-Aparício I (2017) Oil quality control of culinary oils subjected to deep-fat-frying based on NMR and EPR spectroscopy. Food Analyt Meth 10:2467–2480. https://doi.org/10.1007/s12161-016-0778-x

    Article  Google Scholar 

  51. Cunha DA, Neto CA, Colnago AL, Castro RVE, Barbosa LL (2019) Application of time-domain NMR as methodology to quantify adulteration of diesel fuel with soybean oil and frying oil. Fuel 252:567–573. https://doi.org/10.1016/j.fuel.2019.04.149

    Article  Google Scholar 

  52. Dutra DE, Lima AT, Souza OLJ, Silva VGJ, Aquino SAK, Aquino SF, Ramos SC, Menezes CSR (2018) Characterization of fat and biodiesel from mango seeds using 1H NMR spectroscopy. Biomass Convers Bioref 8:135–141. https://doi.org/10.1007/s13399-017-0286-2

    Article  Google Scholar 

  53. Jelassi A, Cheraiel I, Hamza MA, Jannet HB (2014) Chemical composition and characteristic profiles of seed oil from three Tunisian acacia species. J Food Compos Anal 33:49–54. https://doi.org/10.1016/j.jfca.2013.11.001

    Article  Google Scholar 

  54. Calero MA, Munõz E, Pérez-Marin D, Riccioli C, Pérez L, Garrido-Varo A (2018) Evolution of frying oil quality using fourier transform near- infrared (FT-NIR) spectroscopy. Appl Spectr 72:1001–1003. https://doi.org/10.1177/0003702818764125

    Article  Google Scholar 

  55. Shimamoto GG, Favaro AMM, Tubuni M (2015) Simple methods via mid-IRO 1H NMR spectroscopy for the determination of the iodine value of vegetable oils. J Braz Chem Soc 26:1431–1437. https://doi.org/10.5935/0103-5053.20150111

    Article  Google Scholar 

  56. Jung YM, Park SJ, Yoon HS (2016) Quantitative determination of conjugated linoleic acids in hydrogenated vegetable oils using refractive index. Food Sci Biotechnol 25:121–124. https://doi.org/10.1007/s10068-016-0018-6

    Article  Google Scholar 

  57. Moser BR (2011) Effect of soybean oil fatty acid composition and selenium application on biodiesel properties. J Am Oil Chem Soc 88:1019–1028. https://doi.org/10.1007/s11746-010-1746-z

    Article  Google Scholar 

  58. Luque R, Lovett CJ, Datta B, Joy C, Campelo MJ, Romero AA (2010) Biodiesel as feasible petrol fuel replacement; a multidisciplinary overview. Energy Environ Sci 3:1706–1721. https://doi.org/10.1039/C0EE00085J

    Article  Google Scholar 

  59. Silva Filho CS, Miranda CA, Silva FAT, Calarge AF, Souza RR, Santana CCJ, Tambourgi BE (2018) Data on kinetic, energy and emission performance of biodiesel from waste frying oil. J Clean Prod 181:1034–1042. https://doi.org/10.1016/j.dib.2018.04.017

    Article  Google Scholar 

  60. Fasal MA, Suhaila NR, Haseeb ASMA, Rubaiee S, Al-Zahrani A (2018) Influence of copper on the instability and corrosiveness of palm biodiesel and its blends : an assessment on biodiesel sustainability. J Clean Prod 171:1407–1414. https://doi.org/10.1016/j.jclepro.2017.10.144

    Article  Google Scholar 

  61. D’Agosto AM, Silva VAM, Franca SL, Oliveira MC, Alexandre LOM, Marques CGL, Murta SLA, Freitas VAM (2017) Comparative study of emissions from stationary engines using biodiesel made from soybean oil, palm oil and waste frying oil. Renew Sust Energ Rev 70:1376–1392. https://doi.org/10.1016/j.rser.2016.12.040

    Article  Google Scholar 

  62. Rehab MA, Marwa RE, Hesham AH (2020) Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel. Fuel 268:117297. https://doi.org/10.1016/j.fuel.2020.117297

    Article  Google Scholar 

  63. Leoneti AB, Aragão-Leoneti V, Oliveira SV (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145. https://doi.org/10.1016/j.renene.2012.02.032

    Article  Google Scholar 

  64. Pflügl S, Marx H, Mattanovich D, Sauer M (2014) Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresour Technol 152:499–504. https://doi.org/10.1016/j.biortech.2013.11.041

    Article  Google Scholar 

  65. Chatzifragkou A, Dietz D, Komaitis M, Zeng A, Papanikolaou S (2010) Effect of biodiesel-derived waste glycerol impurities on biomass and 1,3-propanediol production of Clostridium butyricum VPI 1718. Biotechnol Bioeng 107:76–84. https://doi.org/10.1002/bit.22767

    Article  Google Scholar 

  66. Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C (2012) Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol 93:1325–1335. https://doi.org/10.1007/s00253-011-3766-5

    Article  Google Scholar 

  67. Mu Y, Teng H, Zhang D, Wang W, Xiu Z (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28:1755–1759. https://doi.org/10.1007/s10529-006-9154-z

    Article  Google Scholar 

  68. Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki AI, Nychas GJE, Zeng AP (2011) Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol 91:101–112. https://doi.org/10.1007/s00253-011-3247-x

    Article  Google Scholar 

  69. Orczyk D, Szymanowska-Powałowska D (2012) Isolation of bacteria of the genus Clostridium able to conversion of glycerol to 1,3-propanediol and optimization of medium. Engine Sci Technol 2:44–59. https://doi.org/10.1155/2013/949107

    Article  Google Scholar 

  70. Wilkens E, Ringel AK, Hortig D, Willke T, Vorlop KD (2012) High level production of 1,3-propanediol form crude glycerol by Clostridium butyricum AKR102a. Appl Microbiol Biotechnol 93:1057–1063. https://doi.org/10.1007/s00253-011-3595-6

    Article  Google Scholar 

  71. Metsoviti M, Zeng AP, Koutinas AA, Papanikolaou S (2013) Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J Biotechnol 163:408–418. https://doi.org/10.1016/j.jbiotec.2012.11.018

    Article  Google Scholar 

  72. Wang X, Zhou J, Sun Y, Xiu Z (2019) Bioconversion of raw glycerol from waste cooking-oil-based biodiesel production to 1,3-propanediol and lactate by a microbial consortium. Front Bioeng Biotechnol 7:1–13. https://doi.org/10.3389/fbioe.2019.00014

    Article  Google Scholar 

  73. Xu F, Li Y, Ge X, Yang L, Li Y (2018) Anaerobic digestion of food waste–challenges and opportunities. Bioresour Technol 247:1047–1058. https://doi.org/10.1016/j.biortech.2017.09.020

    Article  Google Scholar 

  74. Grimberg SJ, Hilderbrandt D, Kinnunen M, Rogers S (2015) Anaerobic digestion of food waste through the operation of a mesophilic two-phase pilot scale digester–assessment of variable loadings on system performance. Bioresour Technol 178:226–229. https://doi.org/10.1016/j.biortech.2014.09.001

    Article  Google Scholar 

  75. Banks CJ, Chesshire M, Heaven S, Arnold R (2011) Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour Technol 102:612–620. https://doi.org/10.1016/j.biortech.2010.08.005

    Article  Google Scholar 

  76. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  77. Lansing S, Hülsemann B, Choudhury A, Schueler J, Lisboa MS, Oechsner H (2019) Food waste co-digestion in Germany and the United States: from lab to full-scale systems. Resour Conserv Recycl 148:104–113. https://doi.org/10.1016/j.resconrec.2019.05.014

    Article  Google Scholar 

  78. Li K, Wang K, Wang J, Yuan Q, Shi C, Wu J, Zuo J (2020) Performance assessment and metagenomic analysis of full-scale innovative two-stage anaerobic digestion biogas plant for food wastes treatment, J. Clean Prod 264(10):121646. https://doi.org/10.1016/j.jclepro.2020.121646

    Article  Google Scholar 

  79. Tsigkou K, Tsafrakidou P, Kopsahelis A, Zagklis D, Kornaros M (2020) Used disposable nappies and expired food products valorization through one- & two-stage anaerobic co-digestion. Renew Energy 147:610–619. https://doi.org/10.1016/j.renene.2019.09.028

    Article  Google Scholar 

  80. Fermoso FG, Serrano A, Alonso-Fariñas B, Fernández-Bolaños J, Borja R, Rodríguez-Gutiérrez G (2018) Valuable compound extraction, anaerobic digestion, and composting: a leading biorefinery approach for agricultural wastes. J Agric Food Chem 66:8451–8468. https://doi.org/10.1021/acs.jafc.8b02667

    Article  Google Scholar 

  81. Awasthi MK, Sarsaiya S, Wainaina S, Rajendran K, Kumar S, Quan W, Duan Y, Awasthi SK, Chen H, Pandey A, Zhang Z, Jain A, Taherzadeh MJ (2019) A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: technological challenges, advancements, innovations, and future perspectives. Renew Sust Energ Rev 111:115–131. https://doi.org/10.1016/j.rser.2019.05.017

    Article  Google Scholar 

  82. Laib M, Djerrou Z, Souilah N, Bentchikou MEM (2020) Valorization of olive mill wastewaters by composting process in the germination of soybean. Res Crops 21(1):70–75

    Google Scholar 

  83. Sarwar M, Patra JK, Ali A, Maqbool M, Arshad MI (2020) Effect of compost and NPK fertilizer on improving biochemical and antioxidant properties of Moringa oleifera. S Afr J Bot 129:62–66. https://doi.org/10.1016/j.sajb.2019.01.009

    Article  Google Scholar 

  84. Chang R, Li Y, Chen Q, Guo Q, Jia J (2019) Comparing the effects of three in situ methods on nitrogen loss control, temperature dynamics and maturity during composting of agricultural wastes with a stage of temperatures over 70 °C. J Environ Manag 230:119–127. https://doi.org/10.1016/j.jenvman.2018.09.076

    Article  Google Scholar 

  85. Kouki S, Saidi N, M’hiri F, Hafiane A, Hassen A (2016) Co-composting of macrophyte biomass and sludge as an alternative for sustainable management of constructed wetland by-products. CLEAN–Soil, Air, Water 44:694–702. https://doi.org/10.1002/clen.201500346

    Article  Google Scholar 

  86. Kiehl EJ (2002) Manual de compostagem: maturação e qualidade do composto. 3 ed. Piracicaba

  87. Empresa Basileira de Pesquisa Agropecuária – Embrapa (2009). Manual de análises químicas de solos, plantas e fertilizantes. Brasília

  88. Pereira-Neto TJ (2010) Manual de compostagem, processo de baixo custo. 2 ed. Editora UFV, Viçosa

  89. Dutra ED, Menezes RS, Primo DC (2012) Aproveitamento de biomassa residual agrícola para produção de compostos orgânicos. Revista Brasileira de Ciências Agrárias 7:465–472. https://doi.org/10.5039/agraria.v7i3a1757

    Article  Google Scholar 

  90. Zhou H, Meng H, Zhao L, Shen Y, Hou Y, Cheng H, Song L (2018) Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresour Technol 258:279–286. https://doi.org/10.1016/j.biortech.2018.02.086

    Article  Google Scholar 

  91. Gao M, Liang F, Yu A, Li B, Yang L (2010) Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere 78(5):614–619. https://doi.org/10.1016/j.chemosphere.2009.10.056

    Article  Google Scholar 

  92. Ajmal M, Aiping S, Awais M, Ullah MS, Saeed R, Uddin S, Zihao X (2020) Optimization of pilot-scale in-vessel composting process for various agricultural wastes on elevated temperature by using Taguchi technique and compost quality assessment. Process Saf Environ Prot. https://doi.org/10.1016/j.psep.2020.05.001

  93. Ribeiro SA, Matias SSR, Sousa RR, Alixandre TF, de Souza Oliveira W (2014) Aplicação de fontes orgânicas e mineral no desenvolvimento e produção do melão no sul do Estado do Piauí. Revista Verde de Agroecologia e Desenvolvimento Sustentável 9(1):46

    Google Scholar 

Download references

Funding

The authors acknowledge CNPq, for financial support CHAMADA UNIVERSAL–MCTI/CNPq N° 14/2014 (Process 454423/2014-4) for sponsoring and aiding this research. This work is part of the National Observatory of Water and Carbon Dynamics in the Caatinga Biome - ONDACBC, supported by FACEPE (grants: APQ-0296-5.01/17; APQ-0498-3.07/17 ONDACBC; APQ-0532-5.01/14), CNPq (grants: 441305/2017-2; 465764/2014-2), and CAPES (grants: 88887.136369/2017-00), and FINEP (CT-Infra 01/2013 - REF 0648/13 - SUGERE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Damilano Dutra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Maria Helena de Sousa, Alice Sabrina Ferreira da Silva, Raphael Chaves Correia, and Nathalia Pereira Leite contributed equivalently to the development of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, M.H., da Silva, A.S.F., Correia, R.C. et al. Valorizing municipal organic waste to produce biodiesel, biogas, organic fertilizer, and value-added chemicals: an integrated biorefinery approach. Biomass Conv. Bioref. 12, 827–841 (2022). https://doi.org/10.1007/s13399-020-01252-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01252-5

Keywords

Navigation