Skip to main content

Advertisement

Log in

Municipal Solid Waste Management in a Low Income Economy Through Biogas and Bioethanol Production

  • Original paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The biodegradable fraction of municipal solid wastes generated from households in Ghana has favourable characteristics worth considering for bioenergy production. The suitability of this biodegradable portion for biogas and bioethanol production was assessed in this study. The assessment was performed on both untreated and hydrothermally treated unsorted and sorted fractions of the waste using standard methods for biomass conversion to bioenergy. Compositional analysis of the waste indicated that unsorted biodegradable municipal solid wastes (BMSW) consisted of 38.7 % dry matter (DM) glucan, 8.3 % DM hemicellulose, 10.1 % DM lignin and 7.6 % DM ash. The sorted fractions with the highest glucan but least lignin and hemicellulose were the pool of cassava, yam and plantain peeling wastes (CYPPW) with 84 % DM glucan much of which was starch, 5.6 % DM lignin and 0.5 % DM hemicellulose. The highest ethanol yield of 0.29 l/kg DM was measured from this same CYPPW while fruit wastes (FW) had the highest biomethane potential of 408 ml CH4/g VS. The BMSW had ethanol yield of 0.17 l/kg DM and biogas 369 ml CH4/g VS. The hydrothermally pretreated wastes had marginal increases in glucose and ethanol yield except the treated yard waste which significantly increased by 54 % in glucose over the untreated waste. The most promising waste fractions were FW, CYPPW and mixed paper wastes. Careful selection of these fractions in feedstock for biofuel production would reduce generation of the waste, improve the quality and effectively lead to higher yield of biofuel over the unsorted form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Sources: (1). http://www.unctad.org/en/docs/ditcted200710_en.pdf; (2) Clixoo [49]

Similar content being viewed by others

References

  1. Mtui, G.Y.S.: Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr. J. Biotechnol. 8, 1398–1415 (2009)

    Google Scholar 

  2. Shi, A.Z., Koh, L.P., Tan, H.T.W.: The biofuel potential of municipal solid waste. GCB Bioenergy 1, 317–320 (2009)

    Article  Google Scholar 

  3. Limayem, A., Ricke, S.C.: Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38, 449–467 (2012)

    Article  Google Scholar 

  4. Valentine, J., Clifton-Brown, J., Hastings, A., Robson, P., Allison, G., Smith, P.: Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4, 1–19 (2012)

    Article  Google Scholar 

  5. Cesaro, A., Belgiorno, V.: Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 240, 24–37 (2014)

    Article  Google Scholar 

  6. Hoornweg, D., Bhada-Tata, P.: A Global Review of Solid Waste Management. World Bank Urban Development Series Knowledge Paper 1–116 (2012)

  7. Miezah, K., Obiri-Danso, K., Kádár, Z., Fei-Baffoe, B., Mensah, M.Y.: Municipal solid waste characterization and quantification as a measure towards effective waste management in Ghana. Waste Manag 46, 15–27 (2015)

    Article  Google Scholar 

  8. Fricke, K., Santen, H., Wallmann, R., Hüttner, A., Dichtl, N.: Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manag 27, 30–43 (2007)

    Article  Google Scholar 

  9. Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014)

    Article  Google Scholar 

  10. Bensah, E.C., Mensah, M.: Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int. J. Chem. Eng. 2003, 1–21 (2003)

    Google Scholar 

  11. Li, A., Antizar-Ladislao, B., Khraisheh, M.: Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst. Eng. 30, 189–196 (2007)

    Article  Google Scholar 

  12. Kalogo, Y., Habibi, S., Maclean, H.L., Joshi, S.V.: Environmental implications of municipal solid waste-derived ethanol. Environ. Sci. Technol. 41, 35–41 (2007)

    Article  Google Scholar 

  13. Oberoi, H.S., Vadlani, P.V., Saida, L., Bansal, S., Hughes, J.D.: Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manag 31, 1576–1584 (2011)

    Article  Google Scholar 

  14. Wilkins, M.R.: Effect of orange peel oil on ethanol production by Zymomonas mobilis. Biomass Bioenergy 33, 538–541 (2009)

    Article  Google Scholar 

  15. Tadele, Z., Assefa, K.: Increasing food production in Africa by boosting the productivity of understudied crops. Agronomy 2, 240–283 (2012)

    Article  Google Scholar 

  16. Kazi, F.K., Fortman, J., Anex, R.: Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol, vol. 102. National Renewable Energy Laboratory, Golden (2010)

    Book  Google Scholar 

  17. Landolina, S., Brown, A.: Overview on Advanced Biofuels Developments. International Energy Agency, Paris (2015)

    Google Scholar 

  18. Howe, P., Warren, K.: Integration of Thermal Energy recovery into solid waste management-Annual report 2013. IEA Bioenergy 43, 534–545 (2013)

  19. Lynd, L.R., Sow, M., Chimphango, A.F., Cortez, L.A., Brito Cruz, C.H., Elmissiry, M., Laser, M., Mayaki, I.A., Moraes, M.A., Nogueira, L.A., Wolfaardt, G.M., Woods, J., van Zyl, W.H.: Bioenergy and African transformation. Biotechnol. Biofuels 8, 18 (2015)

    Article  Google Scholar 

  20. Bjerre, A.B., Olesen, A.B., Fernqvist, T., Plöger, A., Schmidt, A.S.: Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol. Bioeng. 49, 568–577 (1996)

    Article  Google Scholar 

  21. Bensah, E.C., Kádár, Z., Mensah, M.Y.: Ethanol production from hydrothermally-treated biomass from West Africa. BioResources 10, 1–16 (2015)

    Article  Google Scholar 

  22. Pedersen, M., Meyer, A.S.: Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol. Prog. 25, 399–408 (2009)

    Article  Google Scholar 

  23. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Nrel, J.W.: Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples, pp. 3–5. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  24. NREL: Biomass Compositional Analysis Laboratory Providing Detailed and Accurate Characterization. National Renewable Energy Laboratory, Office Energy Efficiency Renewable Energy, Golden (2014)

    Google Scholar 

  25. Ambye-Jensen, M., Thomsen, S.T., Kádár, Z., Meyer, A.S.: Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment. Biotechnol. Biofuels 6, 116 (2013)

    Article  Google Scholar 

  26. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009)

    Article  Google Scholar 

  27. Thomsen, S.T., Kadar, Z., Schmidt, J.E.: Compositional analysis and projected biofuel potentials from common West African agricultural residues. Biomass Bioenergy 63, 210–217 (2014)

    Article  Google Scholar 

  28. Ajao, A.T., Abdullahi, H.J., Atere, T.G., Kolawole, O.M.: Studies on the biodegradation and utilization of selected tuber wastes by Penicillium expansum. Biosci. Res. Commun. 21, 1–6 (2009)

    Google Scholar 

  29. Balamurugan, T., Anbuselvi, S.: Research article physicochemical characteristics of Manihot esculenta plant and its waste. J. Chem. Pharm. Res. 5, 258–260 (2013)

    Google Scholar 

  30. Ding, T.Y., Hii, S.L., Ong, L.G.: Comparison of pretreatment strategies for conversion of coconut husk fiber to fermentable sugars. BioResources 7, 1540–1547 (2012)

    Google Scholar 

  31. Sun, Q., Foston, M., Meng, X., Sawada, D., Pingali, S., O’Neill, H.M., Li, H., Wyman, C.E., Langan, P., Ragauskas, A.J., Kumar, R.: Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnol. Biofuels 7, 150 (2014)

    Article  Google Scholar 

  32. Demirbas, A.: Waste management, waste resource facilities and waste conversion processes. Energy Convers. Manag. 52, 1280–1287 (2011)

    Article  Google Scholar 

  33. Ferrer, I., Gamiz, M., Almeida, M., Ruiz, A.: Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru). Waste Manag 29, 168–173 (2009)

    Article  Google Scholar 

  34. Ghanavati, H., Nahvi, I., Karimi, K.: Organic fraction of municipal solid waste as a suitable feedstock for the production of lipid by oleaginous yeast Cryptococcus aerius. Waste Manag 38, 141–148 (2015)

    Article  Google Scholar 

  35. Jensen, J.W., Felby, C., Jørgensen, H., Rønsch, G.Ø., Nørholm, N.D.: Enzymatic processing of municipal solid waste. Waste Manag 30, 2497–2503 (2010)

    Article  Google Scholar 

  36. Vavouraki, A.I., Volioti, V., Kornaros, M.E.: Optimization of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes. Waste Manag 34, 167–173 (2014)

    Article  Google Scholar 

  37. Petersson, A., Thomsen, M.H., Hauggaard-Nielsen, H., Thomsen, A.B.: Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31, 812–819 (2007)

    Article  Google Scholar 

  38. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Article  Google Scholar 

  39. Saha, B.C., Cotta, M.A.: Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol. Prog. 22, 449–453 (2006)

    Article  Google Scholar 

  40. Saha, B.C., Yoshida, T., Cotta, M.A., Sonomoto, K.: Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind. Crops Prod. 44, 367–372 (2013)

    Article  Google Scholar 

  41. Osei, G., Arthur, R., Afrane, G., Okoh, E.: Potential feedstocks for bioethanol production as a substitute for gasoline in Ghana. Renew. Energy 55, 12–17 (2013)

    Article  Google Scholar 

  42. Palmqvist, E., Grage, H., Meinander, N.Q., Hahn-Hagerdal, B.: Main and interaction effects of acetic acid, furfural and p-hydroxybenzoic acid on growth and ethanol productivity of yeast. Biotechnol. Bioeng. 63, 46–55 (1999)

    Article  Google Scholar 

  43. Wang, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., Li, X.: Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies. Waste Manag 34, 2627–2633 (2014)

    Article  Google Scholar 

  44. Chen, X., Romano, R.T., Zhang, R.: Anaerobic digestion of food wastes for biogas production. Int. J. Agric. Biol. Eng. 3, 61–72 (2010)

    Google Scholar 

  45. Wan, S., Sun, L., Douieb, Y., Sun, J., Luo, W.: Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization. Bioresour. Technol. 146, 619–627 (2013)

    Article  Google Scholar 

  46. Thomsen, S.T., Londoño, J.E.G., Ambye-Jensen, M., Heiske, S., Kádár, Z., Meyer, A.S.: Combination of ensiling and fungal delignification as effective wheat straw pretreatment. Biotechnol. Biofuels 9, 16 (2016)

    Article  Google Scholar 

  47. Bernet, N., Delgenes, N., Akunna, J.C., Delgenes, J.P., Moletta, R.: Combined anaerobic–aerobic SBR for the treatment of piggery wastewater. Water Res. 34, 611–619 (2000)

    Article  Google Scholar 

  48. Bensah, E.C., Kemausuor, F., Miezah, K., Kádár, Z., Mensah, M.: African perspective on cellulosic ethanol production. Renew. Sustain. Energy Rev. 49, 1–11 (2015)

    Article  Google Scholar 

  49. Clixoo: Future Predictions of Cellulosic Ethanol Production Costs. Future Predictions Cellulosic Ethanol Production Costs, 7 (2007)

  50. Larson, D.: Biofuel production technologies: status, prospects and implications for trade and development. In: United Nations Conference on Trade Development, pp. 1–41 (2008)

  51. Sims, R., Taylor, M., Jack, S., Mabee, W.: From 1st to 2nd generation bio fuel technologies: an overview of current industry and RD&D activities. IEA Bioenergy 1–124 (2008)

  52. Davis, R., Tao, L., Tan, E.C.D., Biddy, M.J., Beckham, G.T., Scarlata, C., Jacobson, J., Cafferty, K., Ross, J., Lukas, J., Knorr, D., Schoen, P.: Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons, p. 147. National Renewable Energy Laboratory, Golden (2013)

    Book  Google Scholar 

  53. Zhu, Y., Valkenburg, C.: Municipal solid waste (MSW) to liquid fuels synthesis, volume 2: a techno-economic evaluation of the production of mixed alcohols. Evaluation 2, 1–64 (2009)

    Google Scholar 

  54. Sakamoto, O.: The financial feasibility analysis of municipal solid waste to ethanol conversion. Biomass 163, 1–150 (2004)

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the funding support of DANIDA under the development research project (DFC Journal No. 10-018 RISØ) ‘Biofuels Production from Lignocellulosic Materials (2GBIONRG). Technical assistance from Tomas Fernqvist and Ingelis Larsen are highly appreciated. Zoomlion Ghana Limited is also acknowledged for assisting in collection of the waste samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Fei-Baffoe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miezah, K., Obiri-Danso, K., Kádár, Z. et al. Municipal Solid Waste Management in a Low Income Economy Through Biogas and Bioethanol Production. Waste Biomass Valor 8, 115–127 (2017). https://doi.org/10.1007/s12649-016-9566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9566-5

Keywords

Navigation