Skip to main content

Municipal Solid Waste for Sustainable Production of Biofuels and Value-Added Products from Biorefinery

  • Chapter
  • First Online:
Zero Waste Biorefinery

Abstract

The conversion of municipal solid waste (MSW) to value added products is globally gaining significant prominence. The major portion of MSW is organic consisting of solids such as paper, food waste, wood, plastics, etc., as well as oils. Depending upon the physical, chemical and biological composition of the MSW various technologies are available for its efficient conversion into biofuels and other value added products. The methods used for biochemical conversion includes photo-biological techniques, anaerobic digestion and fermentation. The biological route for MSW utilization for biorefinery applications includes anaerobic digestion and fermentation for biogas and bioethanol, respectively. The oily fraction of wastes can be exploited for biodiesel production. The present review is a comprehensive state of the art of MSW characteristics, energy conversion technologies for biofuels and other value added products generation with special emphasis on the latest developments. Further, it describes the current global scenario focusing on the overview of biofuel production and bioenergy from MSW in biorefinery concept with emphasis on case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour MS (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt J Pet 27(4):1275–1290

    Article  Google Scholar 

  • Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S, Cruz-Sotelo S (2014) Power generation with biogas from municipal solid waste: prediction of gas generation with in situ parameters. Renew Sustain Energy Rev 30:412–419

    Article  CAS  Google Scholar 

  • Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61

    Google Scholar 

  • Bauer F, Coenen L, Hansen T, McCormick K, Palgan YV (2017) Technological innovation systems for biorefineries: a review of the literature. Biofuels Bioprod Biorefin 11(3):534–548

    Article  CAS  Google Scholar 

  • Bernal JM, Lozano P, García-Verdugo E, Burguete MI, Sánchez-Gómez G, López-López G, Pucheault M, Vaultier M, Luis SV (2012) Supercritical synthesis of biodiesel. Molecules 17(7):8696–8719

    Article  CAS  Google Scholar 

  • Beyene HD, Werkneh AA, Ambaye TG (2018) Current updates on waste to energy (WtE) technologies: a review. Renew Energy Focus 24:1–11

    Article  Google Scholar 

  • Byadgi SA, Kalburgi PB (2016) Production of bioethanol from waste newspaper. Procedia Environ Sci 35:555–562

    Article  CAS  Google Scholar 

  • Cekmecelioglu D, Uncu ON (2013) Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manage 33(3):735–739

    Article  CAS  Google Scholar 

  • Chanthakett A, Arif MT, Khan MMK, Oo AM (2021) Performance assessment of gasification reactors for sustainable management of municipal solid waste. J Environ Manage 291:112661

    Google Scholar 

  • Cheah YK, Vidal-Antich C, Dosta J, Mata-Álvarez J (2019) Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Environ Sci Pollut Res 26(35):35509–35522

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 51(7):1412–1421

    Article  CAS  Google Scholar 

  • Datta P, Mohi G, Chander J (2018) Biomedical waste management in India: critical appraisal. J Lab Phys 10(01):006–014

    Google Scholar 

  • De Souza LLP, Lora EES, Palacio JCE, Rocha MH, Renó MLG, Venturini OJ (2018) Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil. J Clean Prod 203:444–468

    Article  Google Scholar 

  • Devi KS, Sujana O, Singh TC (2018) Hazardous waste management in India—a review. Int J Creative Res Thoughts 6(1):1547–1555

    Google Scholar 

  • Eckert C, Xu W, Xiong W, Lynch S, Ungerer J, Tao L, Gill R, Maness PC, Yu J (2014) Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels 7(1):1–11

    Article  Google Scholar 

  • Elango D, Pulikesi M, Baskaralingam P, Ramamurthi V, Sivanesan S (2007) Production of biogas from municipal solid waste with domestic sewage. J Hazard Mater 141(1):301–304

    Article  CAS  Google Scholar 

  • Elefsiniotis P, Wareham DG, Smith MO (2004) Use of volatile fatty acids from an acid-phase digester for denitrification. J Biotechnol 114(3):289–297

    Article  CAS  Google Scholar 

  • Ellis C (2018) World Bank: global waste generation could increase 70% by 2050. Published Sept 23

    Google Scholar 

  • Farooq A, Haputta P, Silalertruksa T, Gheewala SH (2021) A framework for the selection of suitable waste to energy technologies for a sustainable municipal solid waste management system. Frontiers Sustain 2:27

    Article  Google Scholar 

  • Forti V, Baldé K, Kuehr R (2018) E-waste statistics: guidelines on classifications, reporting and indicators

    Google Scholar 

  • Getahun T, Gebrehiwot M, Ambelu A, Van Gerven T, Van der Bruggen B (2014) The potential of biogas production from municipal solid waste in a tropical climate. Environ Monit Assess 186(7):4637–4646

    CAS  Google Scholar 

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev 42:712–725

    Article  CAS  Google Scholar 

  • Hafid HS, Shah UKM, Baharuddin AS, Ariff AB (2017) Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew Sustain Energy Rev 74:671–686

    Article  CAS  Google Scholar 

  • Hasan MM, Rasul MG, Khan MMK, Ashwath N, Jahirul MI (2021) Energy recovery from municipal solid waste using pyrolysis technology: a review on current status and developments. Renew Sustain Energy Rev 145:111073

    Google Scholar 

  • Hrabovsky M (2011) Thermal plasma gasification of biomass. Progress Biomass Bioenergy Prod 39

    Google Scholar 

  • IEA-ETSAP, I.R.E.N.A. (2013) Production of bio-ethylene: technology brief. International Renewable Energy Agency, Abu Dhabi, UAE

    Google Scholar 

  • Ivanov V, Stabnikov V, Ahmed Z, Dobrenko S, Saliuk A (2015) Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int J Environ Sci Technol 12(2):725–738

    Article  CAS  Google Scholar 

  • Kabir E, Kaur R, Lee J, Kim KH, Kwon EE (2020) Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J Clean Prod 258:120536

    Google Scholar 

  • Kendall A (2012) A life cycle assessment of biopolymer production from material recovery facility residuals. Resour Conserv Recycl 61:69–74

    Article  Google Scholar 

  • Krauklis AE, Karl CW, Gagani AI, Jørgensen JK (2021) Composite material recycling technology—state-of-the-art and sustainable development for the 2020s. J Composites Sci 5(1):28

    Article  CAS  Google Scholar 

  • Kumar A, Agrawal A (2020) Recent trends in solid waste management status, challenges, and potential for the future Indian cities—a review. Current Res Environ Sustain 2:100011

    Google Scholar 

  • Lesteur M, Bellon-Maurel V, Gonzalez C, Latrille E, Roger JM, Junqua G, Steyer JP (2010) Alternative methods for determining anaerobic biodegradability: a review. Process Biochem 45(4):431–440

    Article  CAS  Google Scholar 

  • Li A, Antizar-Ladislao B, Khraisheh M (2007) Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst Eng 30(3):189–196

    Article  Google Scholar 

  • Liu B, Rajagopal D (2019) Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nat Energy 4(8):700–708

    Article  CAS  Google Scholar 

  • Lorenzo Llanes J, Kalogirou E (2019) Waste-to-energy conversion in Havana: technical and economic analysis. Social Sci 8(4):119

    Google Scholar 

  • Luo K, Pang Y, Yang Q, Wang D, Li X, Lei M, Huang Q (2019) A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications. Environ Sci Pollut Res 26(14):13984–13998

    Article  CAS  Google Scholar 

  • Matheri AN, Ndiweni SN, Belaid M, Muzenda E, Hubert R (2017) Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renew Sustain Energy Rev 80:756–764

    Article  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  CAS  Google Scholar 

  • Mlonka-Mędrala A, Evangelopoulos P, Sieradzka M, Zajemska M, Magdziarz A (2021) Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality char: experimental and numerical investigations. Fuel 296:120611

    Google Scholar 

  • Mohan SV (2009) Harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int J Hydrogen Energy 34(17):7460–7474

    Article  Google Scholar 

  • Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Bioethylene production from ethanol: a review and techno-economical evaluation. ChemBioEng Reviews 4(2):75–91

    Article  Google Scholar 

  • Molino A, Larocca V, Chianese S, Musmarra D (2018) Biofuels production by biomass gasification: a review. Energies 11(4):811

    Article  Google Scholar 

  • Moretto G, Valentino F, Pavan P, Majone M, Bolzonella D (2019) Optimization of urban waste fermentation for volatile fatty acids production. Waste Manage 92:21–29

    Article  CAS  Google Scholar 

  • Nomanbhay S, Ong MY (2017) A review of microwave-assisted reactions for biodiesel production. Bioengineering 4(2):57

    Article  Google Scholar 

  • Noraini MY, Ong HC, Badrul MJ, Chong WT (2014) A review on potential enzymatic reaction for biofuel production from algae. Renew Sustain Energy Rev 39:24–34

    Article  CAS  Google Scholar 

  • Ofori-Boateng C, Lee KT, Mensah M (2013) The prospects of electricity generation from municipal solid waste (MSW) in Ghana: a better waste management option. Fuel Process Technol 110:94–102

    Article  CAS  Google Scholar 

  • Oliveira PA, Baesso RM, Moraes GC, Alvarenga AV, Costa-Félix RP (2018) Ultrasound methods for biodiesel production and analysis. Biofuels-State of Development; IntechOpen, London, UK, pp 121–148

    Google Scholar 

  • Owamah HI, Dahunsi SO, Oranusi US, Alfa MI (2014) Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Manage 34(4):747–752

    Article  CAS  Google Scholar 

  • Paul S, Dutta A, Defersha F, Dubey B (2018) Municipal food waste to biomethane and biofertilizer: a circular economy concept. Waste Biomass Valorization 9(4):601–611

    Article  CAS  Google Scholar 

  • Pérez V, Pascual A, Rodrigo A, Torreiro MG, Latorre-Sánchez M, Lozano CC, David-Moreno A, Oliva-Dominguez JM, Serna-Maza A, García NH, Granados IG (2020) Integrated innovative biorefinery for the transformation of municipal solid waste into biobased products. In: Waste biorefinery, pp 41–80

    Google Scholar 

  • Reinhart DR, Townsend TG (2018) Landfill bioreactor design and operation. Routledge

    Book  Google Scholar 

  • Saini JK, Kumar G, Singh S, Kuhad RC (2021) Municipal solid waste biorefinery for sustainable production of bioenergy. In: Waste biorefinery, pp 207–233

    Google Scholar 

  • Stephenson JR, Sovacool BK, Inderberg THJ (2021) Energy cultures and national decarbonisation pathways. Renew Sustain Energy Rev 137:110592

    Google Scholar 

  • Strazzera G, Battista F, Garcia NH, Frison N, Bolzonella D (2018) Volatile fatty acids production from food wastes for biorefinery platforms: a review. J Environ Manage 226:278–288

    Article  CAS  Google Scholar 

  • Suhag M, Sharma HR (2015) Biorefinery concept: an overview of producing energy, fuels and materials from biomass feedstocks. Int Adv Res J Sci Eng Technol 2(12):103–109

    Article  Google Scholar 

  • Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36(12):4406–4409

    Article  Google Scholar 

  • Thangaraj B, Solomon PR, Muniyandi B, Ranganathan S, Lin L (2019) Catalysis in biodiesel production—a review. Clean Energy 3(1):2–23

    Article  Google Scholar 

  • Thapa B, Patidar SK, Khatiwada NR, Kc AK, Ghimire A (2019) Production of ethanol from municipal solid waste of India and Nepal. In: Waste valorisation and recycling. Springer, Singapore, pp 47–58

    Google Scholar 

  • Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energy 111:1172–1182

    Article  CAS  Google Scholar 

  • Wojnowska-Baryła I, Kulikowska D, Bernat K (2020) Effect of bio-based products on waste management. Sustainability 12(5):2088

    Article  Google Scholar 

  • Yaashikaa PR, Kumar PS, Saravanan A, Varjani S, Ramamurthy R (2020) Bioconversion of municipal solid waste into bio-based products: a review on valorisation and sustainable approach for circular bioeconomy. Sci Total Environ 748:141312

    Google Scholar 

  • Zheng W, Phoungthong K, Lü F, Shao LM, He PJ (2013) Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manage 33(12):2632–2640

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manirethan, V., Joy, J., Varghese, R.T., Uddandarao, P. (2022). Municipal Solid Waste for Sustainable Production of Biofuels and Value-Added Products from Biorefinery. In: Nandabalan, Y.K., Garg, V.K., Labhsetwar, N.K., Singh, A. (eds) Zero Waste Biorefinery. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8682-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8682-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8681-8

  • Online ISBN: 978-981-16-8682-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics