Skip to main content
Log in

Chlorine‐Based High Density Plasma Etching of α-Ga2O3 Epitaxy Layer

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

High density plasma etching of α-Ga2O3 epitaxy layer was performed in chlorine-based (Cl2/Ar and BCl3/Ar) inductively coupled plasmas (ICPs) and the effect of plasma composition, ICP source power and rf chuck power on the etch rate and surface morphology has been studied. The α-Ga2O3 etch rate increased as Cl2 or BCl3 content in the gas mixture and ICP source power increased, and Cl2/Ar ICP discharges produced higher etch rates than BCl3/Ar discharges under the conditions examined. Increasing rf chuck power was found to increase the α-Ga2O3 etch rate and to improve surface morphology of the etched field. The highest etch rates of ~ 612 Å/min and ~ 603 Å/min were obtained in 13Cl2/2Ar and 13BCl3/2Ar ICP discharges under a moderate source power (500 W) and rf chuck power (250 W) condition, respectively. Anisotropic pattern transfer with a vertical sidewall was performed into the α-Ga2O3 layer using a 10Cl2/5Ar ICP discharge.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kyoung, S., Jung, E.S., Sung, M.Y.: Investigation of the layout and optical proximity correction effects to control the trench etching process on 4H-SiC. Electron. Mater. Lett. 13, 368–372 (2017)

    Article  CAS  Google Scholar 

  2. Kim, S., Ahn, K.S., Ryon, J.H., Kim, H.: Temperature-dependent DC characteristics of AlInN/GaN high-electron-mobility transistors. Electron. Mater. Lett. 13, 302–306 (2017)

    Article  CAS  Google Scholar 

  3. Pearton, S.J., Yang, J., Cary IV, P.H., Ren, F., Kim, J.H., Tadjer, M.J., Mastro, M.A.: A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5, 011301 (2018)

    Article  Google Scholar 

  4. Higashiwaki, M., Murakami, H., Kumagai, Y., Kuramta, A.: Current status of power devices. Jpn. J. Appl. Phys. 55, 1202A1:1–7 (2016)

    Article  Google Scholar 

  5. Kim, M., Seo, J.H., Singisetti, U., Ma, Z.: Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J. Mater. Chem. C 5, 8338–8354 (2017)

    Article  CAS  Google Scholar 

  6. Roy, C., Hill, V.G., Osborn, B.F.: Polymorphism of Ga2O3 and the system Ga2O3-H2O. J. Am. Chem. Soc. 74, 719–722 (1952)

    Article  CAS  Google Scholar 

  7. Stepanov, S.I., Nikolaev, V.I., Bougrov, V.E., Romanov, A.E.: Gallium oxide: properties and applications –a review. Rev. Adv. Mater. Sci. 44, 63–86 (2016)

    CAS  Google Scholar 

  8. Kroll, P., Dronskowski, R., Martin, M.: Formation of spinel-type gallium oxynitride: a density-functional study of binary and ternary phases in the system of Ga-O-N. J. Mater. Chem. 15, 3296–3302 (2005)

    Article  CAS  Google Scholar 

  9. He, H., Orlando, R., Blanco, M.A., Pandey, R., Amzallag, E., Baraille, I., Rérat, M.: First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123 (2006)

    Article  Google Scholar 

  10. Orita, M., Ohta, H., Hirano, M.: Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl. Phys. Lett. 77, 4166–4168 (2000)

    Article  CAS  Google Scholar 

  11. Onuma, T., Saito, S., Sasaki, K., Masui, T., Yamaguchi, T., Honda, T., Higashiwaki, M.: Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy. Jpn. J. Appl. Phys. 54, 112601 (2015)

    Article  Google Scholar 

  12. Galazka, Z., Irmscher, K., Uecker, R., Bertram, R., Pietsch, M., Kwasniewski, A., Naumann, M., Schulz, T., Schewski, R., Klimm, D., Bickermann, M.: On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J. Cryst. Growth 404, 184–191 (2014)

    Article  CAS  Google Scholar 

  13. Kuramata, A., Koshi, K., Watanabe, S., Yamaoka, Y., Masui, T., Yamakoshi, S.: High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 55, 1202A2:1–6 (2016)

    Article  Google Scholar 

  14. Ohira, S., Suzuki, N., Arai, N., Tanaka, M., Sugawara, T., Nakajima, K., Shishido, T.: Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing. Thin Solid Films 516, 5763–5767 (2008)

    Article  CAS  Google Scholar 

  15. Hoshikawa, K., Ohba, E., Kobayashi, T., Yangisawa, J., Miyagawa, C., Nakamura, Y.: Growth of single β-Ga2O3 crystals using vertical Bridgman method in ambient air. J. Cryst. Growth 447, 36–41 (2016)

    Article  CAS  Google Scholar 

  16. Kim, J.H., Mastro, M.A., Tadjer, M.J., Kim, J.H.: Quasi-two-dimensional h-BN/ β-Ga2O3 heterostructure metal-insulator-semiconductor field-effect transistor. ACS Appl. Mater. Interfaces 9, 21322–21327 (2017)

    Article  CAS  Google Scholar 

  17. Green, A.J., Chabak, K.D., Heller, E.R., Fitch, R.C., Baldini, M., Fiedler, A., Irmscher, K., Wagner, G., Galazka, Z., Tetlak, S.E., Crespo, A., Leedy, K., Jessen, G.H.: 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 37, 902–905 (2016)

    Article  Google Scholar 

  18. Park, J.H., MxClintock, R., Razeghi, M.: Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD. Semicond. Sci. Technol. 34, 08LT01:1–5 (2019)

    Google Scholar 

  19. Yao, Y., Okur, S., Lyle, L.A.M., Tompa, G.S., Salagi, T., Sbrockey, N., Davis, R.F., Porter, L.M.: Growth and characterization of α-, β-, and ε-phases of Ga2O3 using MOCVD and HVPE techniques. Mater. Res. Lett. 6, 268–275 (2018)

    Article  CAS  Google Scholar 

  20. Kaneko, K., Fujita, S., Hitora, T.: A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY technique. Jpn. J. Appl. Phys. 57, 02CB18:1–5 (2018)

    Article  Google Scholar 

  21. Dang, G.T., Kawaharamura, T., Furuta, M.: Mist-CVD grown Sn-doped α-Ga2O3 MESFETs. IEEE Trans. Electron Devices 62, 3640–3644 (2015)

    Article  CAS  Google Scholar 

  22. Oda, M., Tokuda, R., Kambara, H., Tanikawa, T., Sasaki, T., Hitora, T.: Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY. Appl. Phys. Express 9, 021101 (2016)

    Article  Google Scholar 

  23. Jian, Z., Oshima, Y., Wright, S., Owen, K., Ahmadi, E.: Chlorine-based inductively coupled plasma etching of α-Ga2O3. Semicond. Sci. Technol. 34, 035006 (2019)

    Article  CAS  Google Scholar 

  24. Son, H., Ra, Y.H., Lee, Y.J., Lee, M.J., Kim, J.H., Hwang, J., Kim, S.W., Lim, T.Y., Jeon, D.W.: Characterization of alpha-Ga2O3 template growth by halide vapor phase epitaxy. J. Korean Inst. Electr. Electon. Mater. Eng. 31, 357–361 (2018)

    Google Scholar 

  25. Son, H., Choi, Y.J., Lee, Y.J., Kim, J.H., Kim, S.W., Ra, Y.H., Lim, T.Y., Hwang, J., Jeon, D.W.: Characterization of alpha-Ga2O3 epilayers grown on cone-shape patterned sapphire substrate by halide vapor phase epitaxy. J. Korean Cryst. Growth 29, 173–178 (2019)

    Google Scholar 

  26. Douglas, E.A., Sanchez, C.A., Kaplar, R.J., Allerman, A., Baca, A.G.: Inductively coupled BCl3/Cl2/Ar plasma etching of Al-rich AlGaN. J. Vac. Sci. Technol. A 35(021305), 1–5 (2017)

    Google Scholar 

  27. Kim, S.B., Min, B.J., Kim, D.P., Kim, C.I.: Effects of BCl3 addition in Cl2/Ar plasma etching of (Ba, Sr)TiO3 thin films. J. Korean Phys. Soc. 38, 264–267 (2001)

    CAS  Google Scholar 

  28. Kim, D.W., Jeong, C.H., Kim, K.N., Lee, H.Y., Kim, H.S., Yeom, G.Y.: High rate sapphire etching using BCl3-based inductively coupled plasma. J. Korean Phys. Soc. 42, S795–S799 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Cho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Um, J.H., Choi, B.S., Jeong, D.H. et al. Chlorine‐Based High Density Plasma Etching of α-Ga2O3 Epitaxy Layer. Electron. Mater. Lett. 17, 142–147 (2021). https://doi.org/10.1007/s13391-020-00267-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00267-4

Keywords

Navigation