Skip to main content
Log in

Etching Characteristics and Mechanisms of TiO2 Thin Films in CF4 + Ar, Cl2 + Ar and HBr + Ar Inductively Coupled Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The comparative study of etching characteristics and mechanisms for TiO2 thin films in CF4 + Ar, Cl2 + Ar and HBr + Ar inductively coupled plasmas was carried out. The etching rates for TiO2, Si and photoresist were measured as functions of gas mixing ratios at fixed gas pressure (10 mTorr), input power (800 W) and bias power (300 W). It was found that the maximum TiO2 etching rate of ~130 nm/min correspond to pure CF4 plasma while an increase in Ar fraction in a feed gas results in the monotonic non-linear decrease in the TiO2 etching rates in all three gas mixtures. Plasma diagnostics by Langmuir probes and 0-dimensional (global) plasma modeling supplied the data on the densities of plasma actives specie as well as on particle and energy fluxes to the etched surface. It was concluded that, under the given set of experimental conditions, the TiO2 etching kinetics in all gas systems correspond to the ion-assisted chemical reaction with a domination of the chemical etching pathway. It was found also that the differences in the absolute TiO2 etching rates correlate with the energy thresholds for TiO2 + F, Cl or Br reaction, and the reaction probabilities for F, Cl and Br atoms exhibit the different changes with the ion energy flux according to the volatility of corresponding etching products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Regan B, Gratzel M (1991) Nature 353:737

    Article  Google Scholar 

  2. Guglielmi M, Colombo P, Esposti LMD, Righini GC, Pellic S, Rigato V (1992) J. Non Cryst. Solids 147–148:641

    Article  Google Scholar 

  3. Hsu YP, Chang SJ, Su YK, Chang CS, Shei SC, Lin YC, Kuo CH (2003) J Electron Mater 32:5

    Article  Google Scholar 

  4. Pak TM, Lei TF, Chao TS (2001) Appl Phys Lett 78:1439

    Article  Google Scholar 

  5. Choi K-R, Woo J-C, Joo Y-H, Chun Y-S, Kim C-I (2013) Vacuum 92:85

    Article  CAS  Google Scholar 

  6. Joo Y-H, Woo J-C, Kim C-I (2012) Trans. Electr. Electron. Mater. 13(3):144

    Article  Google Scholar 

  7. Choi K-R, Woo J-C, Joo Y-H, Chun Y-S, Kim C-I (2014) Trans. Electr. Electron. Mater. 15(1):32

    Article  Google Scholar 

  8. Choi K-R, Woo J-C, Joo Y-H, Kim C-I (2013) Ferroelectrics 456:63

    Article  CAS  Google Scholar 

  9. Garay AA, Hwang SM, Chung CW (2015) Thin Solid Films 587:20

    Article  CAS  Google Scholar 

  10. Noemaun AN, Mont FKW, Cho J, Schubert EF, Kim GB, Sone C (2011) J Vac Sci Technol A 29:051302

    Article  Google Scholar 

  11. Norasetthekul S, Park PY, Baik KH, Lee KP, Shin JH, Jeong BS, Shishodia V, Lambers ES, Norton DP, Pearton SJ (2001) Appl Surf Sci 185:27

    Article  CAS  Google Scholar 

  12. Kim D, Efremov A, Jang H, Kang S, Yun SJ, Kwon K-H (2012) Jpn J Appl Phys 51:106201

    Google Scholar 

  13. Jang H, Efremov A, Kim D, Kang S, Yun SJ, Kwon K-H (2012) Plasma Chem. Plasma Proc. 32:333

    Article  CAS  Google Scholar 

  14. Efremov AM, Kim DP, Kim CI, Trans IEEE (2004) Plasma Sci. 32:1344

    Article  CAS  Google Scholar 

  15. Kwon K-H, Efremov A, Kim M, Min NK, Jeong J, Kim K (2010) Jpn J Appl Phys 49:031103

    Article  Google Scholar 

  16. Johnson EO, Malter L (1950) Phys Rev 80:58

    Article  Google Scholar 

  17. Sugavara M (1998) Plasma etching: fundamentals and applications. Oxford University Press, New York

    Google Scholar 

  18. Efremov A, Min N-K, Choi B-G, Baek K-H, Kwon K-H (2008) J Electrochem Soc 155:D777

    Article  CAS  Google Scholar 

  19. Efremov AM, Kim D-P, Kim C-I (2004) Vacuum 75:133

    Article  CAS  Google Scholar 

  20. Kwon K-H, Efremov A, Kim M, Min NK, Jeong J, Kim K (2010) J Electrochem Soc 157:H574

    Article  CAS  Google Scholar 

  21. Efremov A, Kim Y, Lee H-W, Kwon K-H (2011) Plasma Chem. Plasma Proc. 31:259

    Article  CAS  Google Scholar 

  22. Chun I, Efremov A, Yeom GY, Kwon K-H (2015) Thin Solid Films 579:136

    Article  CAS  Google Scholar 

  23. Efremov AM, Kim G-H, Kim J-G, Bogomolov AV, Kim C-I (2007) Microelectron Eng 84:136

    Article  CAS  Google Scholar 

  24. Efremov A, Choi B-G, Nahm S, Lee HW, Min N-K, Kwon K-H (2008) J. Korean Phys. Soc. 52:48

    Article  CAS  Google Scholar 

  25. Bazin A, Pargon E, Mellhaoui X, Perret D, Mortini B, Joubert O (2008) Advances in resist materials and processing technology XXV. In: Henderson CL (ed) Proceedings of the SPIE, vol 6923, p 692337. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=831628

  26. Pargon E, Menguelti K, Martin M, Bazin A, Chaix-Pluchery O, Sourd C, Derrough S, Lill T, Joubert O (2009) J Appl Phys 105:094902

    Article  Google Scholar 

  27. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  28. Lide DR (1998-1999) Handbook of chemistry and physics. CRC Press, New York

  29. Jin W, Vitale SA, Sawin HH (2002) J Vac Sci Technol A 20:2106

    Article  CAS  Google Scholar 

  30. Gray DC, Tepermeister I, Sawin HH (1993) J Vac Sci Technol B 11:1243

    Article  CAS  Google Scholar 

  31. Lee C, Graves DB, Lieberman MA (1996) Plasma Chem Plasma Proc 16:99

    Article  CAS  Google Scholar 

  32. Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing. Elsevier, Oxford

    Google Scholar 

  33. Ranjan R, Allain JP, Hendricks MR, Ruzic DN (2001) J Vac Sci Technol A 19:1004

    Article  CAS  Google Scholar 

  34. Rossnage SM, Cuomo JJ, Westwood WD (1990) Handbookof plasma processing technology. Noyes Publications, Park Ridge

    Google Scholar 

  35. van Roosmalen AJ, Baggerman JAG, Brader SJH (1991) Dry etching for VLSI. Plenum Press, New York

    Book  Google Scholar 

Download references

Acknowledgments

This study was supported by the Industrial Technology Innovation Program (10054882, Development of dry cleaning technology for nanoscale patterns) funded by the Ministry of Trade, Industry and Energy (MOTIE, Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Ho Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Efremov, A., Lee, B.J. et al. Etching Characteristics and Mechanisms of TiO2 Thin Films in CF4 + Ar, Cl2 + Ar and HBr + Ar Inductively Coupled Plasmas. Plasma Chem Plasma Process 36, 1571–1588 (2016). https://doi.org/10.1007/s11090-016-9737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9737-y

Keywords

Navigation