Skip to main content
Log in

Preparation of Fe–Co–P–Gr/NF Coating via Electroless Composite Plating as Efficient Electrocatalysts for Overall Water Splitting

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The development of electrocatalysts with high activity and low Tafel slope for overall water splitting has become a crucial challenge to exploit the sustainable energy. Herein, we construct a Fe–Co–P–Gr catalyst on nickel foam (NF) support through electroless composite plating to realize the co-deposition of Fe–Co–P alloys and graphene quantum dots. Interestingly, graphene quantum dots exhibit obvious effects on electron mobility and active sites of Fe–Co–P–Gr/NF catalyst. In oxygen evolution reaction, the Fe–Co–P–Gr/NF catalyst exhibits a small overpotential of 230 mV at 10 mA cm−2 and fast kinetics with Tafel slope of 37.8 mV dec−1. Meanwhile, the Fe–Co–P–Gr/NF also has a superior hydrogen evolution reaction performance in 1.0 M KOH. Compared with the Fe–Co–P alloys, the Fe–Co–P–Gr/NF both as the anode and cathode require only 1.58 V to reach a current density of 10 mA cm−2. The successful preparation of Fe–Co–P–Gr/NF electrode through electroless composite deposition provides a new path to manufacture electrocatalysts for overall water splitting.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han, N., Liu, P., Jiang, J., Ai, L., Shao, Z., Liu, S.: Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A (2018). https://doi.org/10.1039/c8ta06529b

    Article  Google Scholar 

  2. Liu, S., Lei, Y.J., Xin, Z.J., Lu, Y.B., Wang, H.Y.: Water splitting based on homogeneous copper molecular catalysts. J. Photochem. Photobiol. A: Chem. (2018). https://doi.org/10.1016/j.jphotochem.2017.09.060

    Article  Google Scholar 

  3. Xiong, B., Chen, L., Shi, J.: Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. (2018). https://doi.org/10.1021/acscatal.7b04286

    Article  Google Scholar 

  4. Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., Nocera, D.G.: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. (2010). https://doi.org/10.1021/cr100246c

    Article  Google Scholar 

  5. Acar, C., Dincer, I.: The potential role of hydrogen as a sustainable transportation fuel to combat global warming. Int. J. Hydrog. Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.10.149

    Article  Google Scholar 

  6. Wang, H., Zhou, T., Li, P., Cao, Z., Xi, W., Zhao, Y., Ding, Y.: Self-supported hierarchical nanostructured NiFe-LDH and Cu3P weaving mesh electrodes for efficient water splitting. ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.7b02654

    Article  Google Scholar 

  7. Chen, J., Liu, J., Xie, J.Q., Ye, H., Fu, X.Z., Sun, R., Wong, C.P.: Co–Fe–P nanotubes electrocatalysts derived from metal–organic frameworks for efficient hydrogen evolution reaction under wide pH range. Nano Energy (2019). https://doi.org/10.1016/j.nanoen.2018.11.051

    Article  Google Scholar 

  8. Yan, K.L., Shang, X., Li, Z., Dong, B., Li, X., Gao, W.K., Chi, J.Q., Chai, Y.M., Liu, C.G.: Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction. Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.04.204

    Article  Google Scholar 

  9. Kuang, M., Han, P., Wang, Q., Li, J., Zheng, G.: CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting. Adv. Funct. Mater. (2016). https://doi.org/10.1002/adfm.201604804

    Article  Google Scholar 

  10. Wasalathanthri, R.N., Jeffrey, S., Awni, R.A., Sun, K., Giolando, D.M.: Electrodeposited copper–cobalt–phosphide: a stable bifunctional catalyst for both hydrogen and oxygen evolution reactions. ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.8b04807

    Article  Google Scholar 

  11. Lian, Y., Sun, H., Wang, X., Qi, P., Mu, Q., Chen, Y., Ye, J., Zhao, X., Deng, Z., Peng, Y.: Carved nanoframes of cobalt-iron bimetal phosphide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. (2019). https://doi.org/10.1039/c8sc03877e

    Article  Google Scholar 

  12. Zhang, J., Chen, G., Müllen, K., Feng, X.: Carbon-rich nanomaterials: fascinating hydrogen and oxygen electrocatalysts. Adv. Mater. (2018). https://doi.org/10.1002/adma.201800528

    Article  Google Scholar 

  13. Sun, J., Zhang, W., Wang, S., Ren, Y., Liu, Q., Sun, Y., Tang, L., Guo, J., Zhang, X.: Ni–Co–B nanosheets coupled with reduced graphene oxide towards enhanced electrochemical oxygen evolution. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.10.296

    Article  Google Scholar 

  14. Shen, Y., Dastafkan, K., Sun, Q., Wang, L., Ma, Y., Wang, Z., Zhao, C.: Improved electrochemical performance of nickel–cobalt hydroxides by electrodeposition of interlayered reduced graphene oxide. Int. J. Hydrog. Energy (2019). https://doi.org/10.1016/j.ijhydene.2018.12.098

    Article  Google Scholar 

  15. Sun, K., Wang, K., Yu, T., Liu, X., Wang, G., Jiang, L., Bu, Y., Xie, G.: High-performance Fe–Co–P alloy catalysts by electroless deposition for overall water splitting. Int. J. Hydrog. Energy (2019). https://doi.org/10.1016/j.ijhydene.2018.11.182

    Article  Google Scholar 

  16. Yan, K.L., Shang, X., Gao, W.K., Dong, B., Li, X., Chi, J.Q., Liu, Y.R., Chai, Y.M., Liu, C.G.: Ternary MnO2/NiCo2O4/NF with hierarchical structure and synergistic interaction as efficient electrocatalysts for oxygen evolution reaction. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.05.207

    Article  Google Scholar 

  17. Zhao, S., Wang, Y., Dong, J., He, C.T., Yin, H., An, P., Zhao, K., Zhang, X., Gao, C., Zhang, L., Lv, J., Wang, J., Zhang, J., Khattak, A.M., Khan, N.A., Wei, Z., Zhang, J., Liu, S., Zhao, H., Tang, Z.: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy (2016). https://doi.org/10.1038/nenergy.2016.184

    Article  Google Scholar 

  18. Zhao, Z., Schipper, D.E., Leitner, A.P., Thirumalai, H., Chen, J.H., Xie, L., Qin, F., Alam, M.K., Grabow, L.C., Chen, S., Wang, D., Ren, Z., Wang, Z., Whitmire, K.H., Bao, J.: Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting. Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2017.07.027

    Article  Google Scholar 

  19. Zhang, B., Zhang, J., Tang, X., Lui, Y.H., Hu, S.: An investigation of Fe incorporation on the activity and stability of homogeneous (FexNi1−x)2P solid solutions as electrocatalysts for alkaline hydrogen evolution. Electrochim. Acta (2019). https://doi.org/10.1016/j.electacta.2018.10.107

    Article  Google Scholar 

  20. Chen, W.F., Sasaki, K., Ma, C., Frenkel, A.I., Marinkovic, N., Muckerman, J.T., Zhu, Y., Adzic, R.R.: Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. (2012). https://doi.org/10.1002/anie.201200699

    Article  Google Scholar 

  21. Li, J., Wang, Y., Zhou, T., Zhang, H., Sun, X., Tang, J., Zhang, L., Al-Enizi, A.M., Yang, Z., Zheng, G.: Nanoparticle superlattices as efficient bifunctional electrocatalysts for water splitting. J. Am. Chem. Soc. (2015). https://doi.org/10.1021/jacs.5b07756

    Article  Google Scholar 

  22. Chen, W.F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.H., Zhu, Y., Muckerman, J.T., Fujita, E.: Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ. Sci. (2013). https://doi.org/10.1039/c3ee40596f

    Article  Google Scholar 

  23. Regmi, Y.N., Waetzig, G.R., Duffee, K.D., Schmuecker, S.M., Thode, J.M., Leonard, B.M.: Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. J. Mater. Chem. A (2015). https://doi.org/10.1039/c5ta01296a

    Article  Google Scholar 

  24. Wu, H.B., Xia, B.Y., Yu, L., Yu, X.Y., Lou, X.W.: Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. (2015). https://doi.org/10.1038/ncomms7512

    Article  Google Scholar 

  25. Gupta, S., Yadav, A., Bhartiya, S., Singh, M.K., Miotello, A., Sarkar, A., Patel, N.: Co oxide nanostructures for electrocatalytic water-oxidation: effects of dimensionality and related properties. Nanoscale (2018). https://doi.org/10.1039/c8nr00348c

    Article  Google Scholar 

  26. Burke, M.S., Kast, M.G., Trotochaud, L., Smith, A.M., Boettcher, S.W.: Cobalt-Iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. (2015). https://doi.org/10.1021/jacs.5b00281

    Article  Google Scholar 

  27. Anantharaj, S., Ede, S.R., Sakthikumar, K., Karthick, K., Mishra, S., Kundu, S.: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. (2016). https://doi.org/10.1021/acscatal.6b02479

    Article  Google Scholar 

  28. Zhou, L., Shao, M., Li, J., Jiang, S., Wei, M., Duan, X.: Two-dimensional ultrathin arrays of CoP: electronic modulation toward high performance overall water splitting. Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2017.10.009

    Article  Google Scholar 

  29. Hou, C.C., Chen, Q.Q., Wang, C.J., Liang, F., Lin, Z., Fu, W.F., Chen, Y.: Self-supported cedarlike semimetallic Cu3P nanoarrays as a 3D high-performance Janus electrode for both oxygen and hydrogen evolution under basic conditions. ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b06251

    Article  Google Scholar 

  30. Jiang, S., Ithisuphalap, K., Zeng, X., Wu, G., Yang, H.: 3D porous cellular NiCoO2/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions. J. Power Sources 399, 66–75 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.074

    Article  CAS  Google Scholar 

  31. Zhao, M., Zhang, J., Xiao, H., Hu, T., Jia, J., Wu, H.: Facile: in situ synthesis of a carbon quantum dot/graphene heterostructure as an efficient metal-free electrocatalyst for overall water splitting. Chem. Commun. 55, 1635–1638 (2019). https://doi.org/10.1039/c8cc09368g

    Article  CAS  Google Scholar 

  32. Ye, L., Wen, Z.: Reduced graphene oxide supporting hollow bimetallic phosphide nanoparticle hybrids for electrocatalytic oxygen evolution. Electrochem. Commun. (2017). https://doi.org/10.1016/j.elecom.2017.09.007

    Article  Google Scholar 

  33. Yan, L., Jiang, H., Xing, Y., Wang, Y., Liu, D., Gu, X., Dai, P., Li, L., Zhao, X.: Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. J. Mater. Chem. A (2018). https://doi.org/10.1039/c7ta10218f

    Article  Google Scholar 

  34. Debata, S., Patra, S., Banerjee, S., Madhuri, R., Sharma, P.K.: Controlled hydrothermal synthesis of graphene supported NiCo2O4 coral-like nanostructures: an efficient electrocatalyst for overall water splitting. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.01.302

    Article  Google Scholar 

  35. Chen, N., Jiang, J.T., Xu, C.Y., Yuan, Y., Gong, Y.X., Zhen, L.: Co7Fe3 and Co7Fe3@SiO2 nanospheres with tunable diameters for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b03907

    Article  Google Scholar 

  36. Liang, Q., Luo, H., Geng, J., Chen, J.: Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(VI). Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2017.12.145

    Article  Google Scholar 

  37. Li, S., Song, G., Fu, Q., Pan, C.: Preparation of Cu-graphene coating via electroless plating for high mechanical property and corrosive resistance. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.11.031

    Article  Google Scholar 

  38. Liang, H., Gandi, A.N., Anjum, D.H., Wang, X., Schwingenschlögl, U., Alshareef, H.N.: Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 16, 7718–7725 (2016). https://doi.org/10.1021/acs.nanolett.6b03803

    Article  CAS  Google Scholar 

  39. Xiong, D., Wang, X., Li, W., Liu, L.: Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution. Chem. Commun. (2016). https://doi.org/10.1039/c6cc04151e

    Article  Google Scholar 

  40. Huang, C., Ouyang, T., Zou, Y., Li, N., Liu, Z.Q.: Ultrathin NiCo2Px nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting. J. Mater. Chem. A (2018). https://doi.org/10.1039/c7ta11364a

    Article  Google Scholar 

  41. McCrory, C.C.L., Jung, S., Peters, J.C., Jaramillo, T.F.: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. (2013). https://doi.org/10.1021/ja407115p

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Taishan Scholar Program of Shandong (ts201712046) and the National Natural Science Foundation of China (Grant No. 51672145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangwen Xie or Luhua Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Sun, K., Li, Z. et al. Preparation of Fe–Co–P–Gr/NF Coating via Electroless Composite Plating as Efficient Electrocatalysts for Overall Water Splitting. Electron. Mater. Lett. 16, 164–173 (2020). https://doi.org/10.1007/s13391-019-00197-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-019-00197-w

Keywords

Navigation