Skip to main content

Advertisement

Log in

Effect of Relative Density on Microstructure, Corrosion Resistance and Mechanical Performance of Porous Ti–20Zr Alloys Fabricated by Powder Metallurgy

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The microstructure, corrosion resistance and mechanical properties of a binary Ti–20Zr (at. %) alloy with differing porosities were investigated. The alloys were produced following a standard powder metallurgy with sintering at 1200 °C for 4, 6, and 8 h. A space holder agent was used to obtain two ranges of relative density, i.e., 74.8–89.3% and 54.6–66.7%. Metallographic examinations were conducted by using optical microscopy and scanning electron microscopy. The confirmation of chemical composition was performed by energy dispersive spectrometry and elemental mapping analysis. Electron backscatter diffraction analysis was conducted to investigate microstructure morphology. Phase identifications were detected by X-ray diffraction. Uniaxial compressive tests were carried out and also potentiodynamic polarization was employed to understand the corrosion performances of the alloys. Experimental results showed that the pore size and pore connectivity were able to be controlled by the sintering time and a fixed amount of space holder agent. The phase constituents of the alloys were characterized as a mixture of predominant hcp α phase and some distorted hcp α′ phase. As foreseen, the ultimate compressive strength and elastic modulus of the alloys increased with increasing relative density. Results of corrosion resistance revealed adding space holder reduced the polarization resistance of Ti–20Zr (at. %) sintered for 6 h from 15.4 to 14.09 Ω. However, volume fraction of general porosity did not affect the microstructure of the alloys. In conclusion, the relative density of the alloys achieved in this study played a crucial role on the mechanical properties and corrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Demircan, G.; Ozen, M.; Kisa, M.; Acikgoz, A.; Işıker, Y.: The effect of nano-gelcoat on freeze-thaw resistance of glass fiber-reinforced polymer composite for marine applications. Ocean Eng. 269, 113589 (2023). https://doi.org/10.1016/j.oceaneng.2022.113589

    Article  Google Scholar 

  2. Ozen, M.; Demircan, G.; Kisa, M.; Acikgoz, A.; Ceyhan, G.; Işıker, Y.: Thermal properties of surface-modified nano-Al2O3/kevlar fiber/epoxy composites. Mater. Chem. Phys. 278, 125689 (2022). https://doi.org/10.1016/j.matchemphys.2021.125689

    Article  CAS  Google Scholar 

  3. Demircan, G.; Kisa, M.; Ozen, M.; Acikgoz, A.: Quasi-static penetration behavior of glass-fiber-reinforced epoxy nanocomposites. Mech. Compos. Mater. 57, 503–516 (2021). https://doi.org/10.1007/s11029-021-09973-y

    Article  CAS  ADS  Google Scholar 

  4. Spector, M.: Bone Ingrowth into porous polymers. In: Biocompatibility of Orthopedic İmplants. pp. 55–88 (1982)

  5. Matuła, I.; Dercz, G.; Zubko, M.; Maszybrocka, J.; Jurek-Suliga, J.; Golba, S.; Jendrzejewska, I.: Microstructure and porosity evolution of the Ti–35Zr biomedical alloy produced by elemental powder metallurgy. Mater. (Basel). 13, 4539 (2020). https://doi.org/10.3390/ma13204539

    Article  CAS  ADS  Google Scholar 

  6. Okuno, O.; Shibata, N.; MIURA, I,: Pore structures and mechanical properties of the porous Zr-Ti ımplants. Dent. Mater. J. 6(175–184), 225 (1987). https://doi.org/10.4012/dmj.6.175

    Article  Google Scholar 

  7. Wen, C.E.; Yamada, Y.; Hodgson, P.D.: Fabrication of novel TiZr alloy foams for biomedical applications. Mater. Sci. Eng. C 26(8), 1439–1444 (2006). https://doi.org/10.1016/j.msec.2005.08.006

    Article  CAS  Google Scholar 

  8. Wheeler, K.; Karagianes, M.; Sump, K.: Porous titanium alloy for prosthesis attachment. In: Titanium Alloys in Surgical Implants. pp. 241–241–14. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA pp. 19428–2959 https://doi.org/10.1520/STP28947S

  9. Pilliar, R.M.: Porous-surfaced metallic implants for orthopedic applications. J. Biomed. Mater. Res. 21, 1–33 (1987)

    CAS  PubMed  Google Scholar 

  10. Niu, W.; Bai, C.; Qiu, G.; Wang, Q.: Processing and properties of porous titanium using space holder technique. Mater. Sci. Eng. A. 506, 148–151 (2009). https://doi.org/10.1016/j.msea.2008.11.022

    Article  CAS  Google Scholar 

  11. Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghani, S.A.C.; Kurniawan, T.; Ismail, M.H.; Ibrahim, M.H.I.: Study of corrosion in biocompatible metals for implants: A review. J. Alloys Compd. 701, 698–715 (2017). https://doi.org/10.1016/j.jallcom.2017.01.196

    Article  CAS  Google Scholar 

  12. Massalski, T.B.; Murray, J.L.; Bennett, L.H.; Baker, H.: Binary Alloy Phase. Am. Soc. Met. 1, 283 (1986)

    Google Scholar 

  13. Liu, Q.; Meng, Q.; Guo, S.; Zhao, X.: α′ Type Ti–Nb–Zr alloys with ultra-low Young’s modulus and high strength. Prog. Nat. Sci. Mater. Int. 23, 562–565 (2013). https://doi.org/10.1016/j.pnsc.2013.11.005

    Article  Google Scholar 

  14. Gottlow, J.; Dard, M.; Kjellson, F.; Obrecht, M.; Sennerby, L.: Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin. Implant Dent. Relat. Res. 14, 538–545 (2012). https://doi.org/10.1111/j.1708-8208.2010.00289.x

    Article  PubMed  Google Scholar 

  15. Wang, B.; Ruan, W.; Liu, J.; Zhang, T.; Yang, H.; Ruan, J.: Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti–Zr alloys for dental application. J. Biomater. Appl. 33, 766–775 (2019). https://doi.org/10.1177/0885328218811052

    Article  CAS  PubMed  Google Scholar 

  16. Qu, W.; Sun, X.; Yuan, B.; Xiong, C.; Zhang, F.; Li, Y.; Sun, B.: Microstructures and phase transformations of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) shape memory alloys. Mater. Charact. 122, 1–5 (2016). https://doi.org/10.1016/j.matchar.2016.10.019

    Article  CAS  Google Scholar 

  17. Li, B.: Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: reaction mechanism and anisotropy in pore structure. Acta Mater. 48, 3895–3904 (2000). https://doi.org/10.1016/S1359-6454(00)00184-1

    Article  CAS  ADS  Google Scholar 

  18. Stern, M.: Electrochemical polarization. J. Electrochem. Soc. 104, 559 (1957). https://doi.org/10.1149/1.2428653

    Article  CAS  Google Scholar 

  19. Yolun, A.; Şimşek, M.; Kaya, M.; Annaç, E.E.; Köm, M.; Çakmak, Ö.: Fabrication, characterization, and in vivo biocompatibility evaluation of titanium-niobium implants. Proc. Inst Mech. Eng. Part H J. Eng. Med. 235, 99–108 (2021). https://doi.org/10.1177/0954411920960854

    Article  Google Scholar 

  20. dos Santos, D.R.; Henriques, V.A.R.; Cairo, C.A.A.; dos Pereira, M.S.: Production of a low young modulus titanium alloy by powder metallurgy. Mater. Res. 8, 439–442 (2005). https://doi.org/10.1590/S1516-14392005000400014

    Article  Google Scholar 

  21. Medvedev, A.E.; Molotnikov, A.; Lapovok, R.; Zeller, R.; Berner, S.; Habersetzer, P.; Dalla Torre, F.: Microstructure and mechanical properties of Ti–15Zr alloy used as dental implant material. J. Mech. Behav. Biomed. Mater. 62, 384–398 (2016). https://doi.org/10.1016/j.jmbbm.2016.05.008

    Article  CAS  PubMed  Google Scholar 

  22. PDF-4+ 2019, ICDD. (n.d.). http://www.icdd.com/index.php/pdf-4/ (2023). Accessed 19 Jan 2023

  23. Rao, X.; Chu, C.L.; Zheng, Y.Y.: Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method. J. Mech. Behav. Biomed. Mater. 34, 27–36 (2014). https://doi.org/10.1016/j.jmbbm.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  24. Li, S.; Choi, M.-S.; Nam, T.-H.: Phase stability of the amorphous phase and non-equilibrium phase in a β Ti-Zr-based shape memory alloy. Scr. Mater. 195, 113721 (2021). https://doi.org/10.1016/j.scriptamat.2021.113721

    Article  CAS  Google Scholar 

  25. Cacciamani, G.; Riani, P.; Valenza, F.: Equilibrium between MB2 (M=Ti, Zr, Hf) UHTC and Ni: A thermodynamic database for the B-Hf–Ni–Ti–Zr system. Calphad 35, 601–619 (2011). https://doi.org/10.1016/j.calphad.2011.10.003

    Article  CAS  Google Scholar 

  26. Ho, W.-F.; Chen, W.-K.; Wu, S.-C.; Hsu, H.-C.: Structure, mechanical properties, and grindability of dental Ti–Zr alloys. J. Mater. Sci. Mater. Med. 19, 3179–3186 (2008). https://doi.org/10.1007/s10856-008-3454-x

    Article  CAS  PubMed  Google Scholar 

  27. Çakmak, Ö.; Kaya, M.: Effect of sintering procedure on microstructure and mechanical properties of biomedical TiNbSn alloy produced via powder metallurgy. Appl. Phys. A Mater. Sci. Process. 127, 561 (2021). https://doi.org/10.1007/s00339-021-04678-4

    Article  CAS  ADS  Google Scholar 

  28. Rebelo, Q.H.F.; de Souza, S.M.; Trichês, D.M.; de Figueiredo Pereira, A.F.F.; de Lima, J.C.: High pressure x-ray diffraction studies of the nanostructured Ge34Sb66 solid solution produced by mechanical alloying. J. Alloys Compd. 722, 131–137 (2017). https://doi.org/10.1016/j.jmbbm.2014.02.001

    Article  CAS  Google Scholar 

  29. Burdick, J.A.; Frankel, D.; Dernell, W.S.; Anseth, K.S.: An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials 24, 1613–1620 (2003). https://doi.org/10.1016/S0142-9612(02)00538-0

    Article  CAS  PubMed  Google Scholar 

  30. James, S.P.; Jasty, M.; Davies, J.; Piehler, H.; Harris, W.H.: A fractographic investigation of PMMA bone cenent focusing on the relationship between porosity reduction and increased fatigue life. J. Biomed. Mater. Res. 26, 651–662 (1992). https://doi.org/10.1002/jbm.820260507

    Article  CAS  PubMed  Google Scholar 

  31. El-Hajje, A.; Kolos, E.C.; Wang, J.K.; Maleksaeedi, S.; He, Z.; Wiria, F.E.; Choong, C.; Ruys, A.J.: Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. J. Mater. Sci. Mater. Med. 25, 2471–2480 (2014). https://doi.org/10.1007/s10856-014-5277-2

    Article  CAS  PubMed  Google Scholar 

  32. Li, Y.H.; Chen, N.; Zhang, H.L.: Powder sintering and characterization of biomedical porous tinb alloy. Dig. J. Nanomater. Biostructures. 13, 491–498 (2018)

    Google Scholar 

  33. Kaya, M.; Yakuphanoğlu, F.; Elibol, E.; Köm, M.: Microstructure characterization and biocompatibility behaviour of TiNbZr alloy fabricated by powder metallurgy. Mater. Res. Express 6, 126560 (2019). https://doi.org/10.1088/2053-1591/ab58a5

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the Republic of Turkey Ministry of National Education for providing financial support during experimental studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Demircan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakurt, E.M., Huang, Y., Kaya, M. et al. Effect of Relative Density on Microstructure, Corrosion Resistance and Mechanical Performance of Porous Ti–20Zr Alloys Fabricated by Powder Metallurgy. Arab J Sci Eng 49, 1479–1489 (2024). https://doi.org/10.1007/s13369-023-07889-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07889-4

Keywords

Navigation