Skip to main content
Log in

Effect of Ti on microstructure, mechanical properties and corrosion resistance of Zr-Ta-Ti alloys processed by spark plasma sintering

Ti 对放电等离子烧结Zr-Ta-Ti 合金组织、力学性能及耐蚀性的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The microstructure, mechanical properties and corrosion resistance of Zr-30%Ta and Zr-25%Ta-5%Ti alloy prepared by spark plasma sintering (SPS) technology were investigated. The experimental results showed that the Zr-Ta-Ti alloys made by the SPS processing have a low level of porosity with the relative density of 96%–98%. The analyses of XRD and TEM revealed that the Zr-30Ta alloy consists of α+β phase, and the Zr-25Ta-5Ti alloy belongs to the near β type alloy containing a small amount of α and ω phases. With the addition of Ti, the elastic modulus of the alloys was decreased from (99.5±7.2) GPa for Zr-30Ta alloy to (73.6±6.3) GPa for Zr-25Ta-5Ti alloy. Furthermore, it is shown that, in comparison to CP-Ti and Ti-6Al-4V alloy, the Zr-Ta-Ti alloy produced in this work offers an improved corrosion resistance due to the more stable ZrO2 and Ta2O5 generated in the passivation film on the surface of the alloys. This study demonstrates that Zr-Ta-Ti alloys are a promising candidate of novel metallic biomaterials.

摘要

本文研究了采用放电等离子烧结(SPS)技术制备的Zr-30Ta 和Zr-25Ta-5Ti 合金的组织、力学性 能和耐蚀性。实验结果表明,采用SPS 工艺制备的Zr-Ta-Ti 合金孔隙率低,相对密度为96%~98%。 XRD 和TEM 分析表明,Zr-30Ta 合金由α+β相组成,Zr-25Ta-5Ti 合金属于近β型合金,含有少量α 和ω相。随着Ti 的加入,合金的弹性模量由(99.5±7.2) GPa (Zr-30Ta)下降到(73.6±6.3) GPa (Zr-25Ta-5Ti)。此外,与CP-Ti 和Ti-6Al-4V 合金相比,Zr-Ta-Ti 合金由于在合金表面钝化膜中生成更 稳定的ZrO2 和Ta2 O5 而具有更强的耐蚀性。以上研究表明,Zr-Ta-Ti 合金是一种很有前途的新型金属 生物材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KONDO R. Microstructure and mechanical properties of as-cast Zr-Nb alloys [J]. Acta Biomaterialia, 2011, 7(12): 4278–4284. DOI: https://doi.org/10.1016/j.actbio.2011.07.020.

    Google Scholar 

  2. ZHAO X L, LI L, NIINOMI M, NAKAI M, ZHANG D L, SURYANARAYANA C. Metastable Zr-Nb alloys for spinal fixation rods with tunable Young’s modulus and low magnetic resonance susceptibility [J]. Acta Biomaterialia, 2017, 62(15): 372–384. DOI: https://doi.org/10.1016/j.actbio.2017.08.026.

    Google Scholar 

  3. ZHOU Y L, NIINOMI M, AKAHORI T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications [J]. Materials Science and Engineering A, 2004, 371(1, 2): 283–290. DOI: https://doi.org/10.1016/j.msea.2003.12.011.

    Google Scholar 

  4. CATALANI S, STEA S, BERAUDI A, GILBERTI M E, BORDINI B, TONI A, APOSTOLI P. Vanadium release in whole blood, serum and urine of patients implanted with a titanium alloy hip prosthesis [J]. Clinical Toxicology, 2013, 51(7): 550–556. DOI: 10.3109/15563650.2013.818682.

    Google Scholar 

  5. MARECI D, BOLAT G, CAILEAN A, SANTANA J J, IZQUIERDO J, SOUTO R M. Effect of acidic fluoride solution on the corrosion resistance of ZrTi alloys for dental implant application [J]. Corrosion Science, 2014, 87(5): 334–343. DOI: https://doi.org/10.1016/j.corsci.2014.06.042.

    Google Scholar 

  6. GODLEY R, STAROSVETSKY D, GOTMAN I. Corrosion behavior of a low modulus β-Ti-45%Nb alloy for use in medical implants [J]. Journal of Materials Science-Materials in Medicine, 2006, 17(1): 63–67. DOI: https://doi.org/10.1007/s10856-006-6330-6.

    Google Scholar 

  7. MÖLLER B, TERHEYDEN H, AÇIL Y, PURCZ N M, HERTRAMPF K, TABAKOV A, BEHRENS E, WILTFANG J. A comparison of biocompatibility and osseointegration of ceramic and titanium implants: An in vivo and in vitro study [J]. International Journal of Oral & Maxillofacial Surgery, 2012, 41(5): 638–645. DOI: https://doi.org/10.1016/j.ijom.2012.02.004.

    Google Scholar 

  8. ZHOU F, WANG B, QIU K, LIN W, LI L, WANG Y B, NIE F. Microstructure, corrosion behavior and cytotoxicity of Zr-Nb alloys for biomedical application [J]. Materials Science and Engineering C, 2012, 32(4): 851–857. DOI: https://doi.org/10.1016/j.msec.2012.02.002.

    Google Scholar 

  9. CORREA D R N, VICENTE F B, DONATO TAG, ARANA-CHAVEZ V E, BUZALAF M A R, Grandini C R. The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications [J]. Materials Science and Engineering C, 2014, 34(1): 354–359. DOI: https://doi.org/10.1016/j.msec.2013.09.032.

    Google Scholar 

  10. JHA S K, KESKAR N, VISHNU NARAYAN K I, MANI KRISHNA K V, SRIVASTAVA D, DEY G K, SAIBABA N. Microstructural and textural evolution during hot deformation of dilute Zr-Sn alloy [J]. Journal of Nuclear Materials, 2016, 482: 12–18. DOI: https://doi.org/10.1016/j.jnucmat.2016.09.028.

    Google Scholar 

  11. SUYALAT U, RYOTA K, YUSUKE T, HISASHI D, NAOYUKI N, TAKAO H. Effects of phase constitution on magnetic susceptibility and mechanical properties of Zr-rich Zr-Mo alloys [J]. Acta Biomaterialia, 2011, 7(12): 4259–4266. DOI: https://doi.org/10.1016/j.actbio.2011.07.005.

    Google Scholar 

  12. CAI S, DAYMOND M R, KHAN A K, HOLT R A, OLIVER E C. Elastic and plastic properties of β-Zr at room temperature [J]. Journal of Nuclear Materials, 2009, 393(1): 67–76. DOI: https://doi.org/10.1016/j.jnucmat.2009.05.007.

    Google Scholar 

  13. LIU J, CHANG L, LIU H, LI Y, YANG H, RUAN J. Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material [J]. Materials Science and Engineering C, 2017, 71: 512–519. DOI: https://doi.org/10.1016/j.msec.2016.10.043.

    Google Scholar 

  14. BRANZOI I V, IORDOC M, CODESCU M. Electrochemical studies on the stability and corrosion resistance of new zirconium-based alloys for biomedical applications [J]. Surface and Interface Analysis, 2008, 40(3, 4): 167–173. DOI: https://doi.org/10.1002/sia.2750.

    Google Scholar 

  15. BALLA V K, BODHAK S, BOSE S, BANDYOPADHYAY A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties [J]. Acta Biomaterialia, 2010, 6(8): 3349–3359. DOI: https://doi.org/10.1016/j.actbio.2010.01.046.

    Google Scholar 

  16. MEREIB D, SEU U C C, ZAKHOUR M, NAKHL M, JEAN-FRANCOIS S. Fabrication of biomimetic titanium laminated material using flakes powder metallurgy [J]. Journal of Materials Science, 2018, 53(5866): 1–12. DOI: https://doi.org/10.1007/s10853-018-2086-x.

    Google Scholar 

  17. CHANG L, LIU J, YANG H, RUAN J. Effects of Zr contents on the microstructure, mechanical properties and biocompatibility of Ta-Zr alloys [J]. Materials Science Forum, 2018, 914: 37–44. DOI: https://doi.org/10.1016/j.matdes.2018.107555.

    Google Scholar 

  18. BAYODE B L, LETHABANE M L, OLUBAMBI P A, SIGALAS I, SHONGWE M B, RAMAKOKOVHU M M. Densification and micro-structural characteristics of spark plasma sintered Ti-Zr-Ta powders [J]. Powder Technology, 2017, 321: 471–478. DOI: https://doi.org/10.1016/j.powtec.2017.08.031.

    Google Scholar 

  19. HENRIQUES V A R, SILVA C R M. Production of titanium alloys for medical implants by powder metallurgy [J]. Key Engineering Materials, 2001, 189–191: 443–448. DOI: https://doi.org/10.4028/u]www.scientific.net/KEM.189-191.443.

    Google Scholar 

  20. CHAIM R. Densification mechanisms in spark plasma sintering of nanocrystalline ceramics [J]. Materials Science and Engineering A, 2007, 443: 25–32. DOI: https://doi.org/10.1016/j.msea.2006.07.092.

    Google Scholar 

  21. LIU H W, BISHOP D P, PLUCKNETT K P. Densification behaviour and microstructural evolution of Ti-48Al consolidated by spark plasma sintering [J]. Journal of Materials Science, 2017, 52(1): 613–627. DOI: https://doi.org/10.1007/s10853-016-0358-x.

    Google Scholar 

  22. OLIVEIRA N T C, BIAGGIO S R, NASCENTE P A P, ROCHA-FILHO R C, BOCCHI N. Investigation of passive films grown on biocompatible Ti-50Zr and Ti-13Zr-13Nb alloys by XPS [J]. Surface and Interface Analysis, 2006, 38(4): 410–412. DOI: https://doi.org/10.1002/sia.2201.

    Google Scholar 

  23. MILSOEV, ZERJAV G, CALDERON MORENO J M, MONICA P. Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti-20Nb-10Zr-5Ta alloy [J]. Electrochimica Acta, 2013, 99(3): 176–189. DOI: https://doi.org/10.1016/j.electacta.2013.03.086.

    Google Scholar 

  24. PAN J, THIERRY D, LEYGRAF C. Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application [J]. Electrochimica Acta, 1996, 41(7): 1143–1153. DOI: https://doi.org/10.1016/0013-4686(95)00465-3.

    Google Scholar 

  25. DAI N, ZHANG L, ZHANG J, ZHANG X, NIE Q, CHEN Y, WU M, CHAO Y. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes [J]. Corrosion Science, 2016, 111: 703–710. DOI: https://doi.org/10.1016/j.corsci.2016.06.009.

    Google Scholar 

  26. JONÁSOVÁL, MÜLLER F A, HELEBRANT A, STRNAD J, GREIL P. Biomimetic apatite formation on chemically treated titanium [J]. Biomaterials, 2004, 25(7): 1187–1194. DOI: https://doi.org/10.1016/j.biomaterials.2003.08.009.

    Google Scholar 

  27. GUO W, SUN J, WU J. Electrochemical and XPS studies of corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy in Ringer’s solution [J]. Materials Chemistry and Physics, 2009, 113(2,3): 816–820. DOI: https://doi.org/10.1016/j.matchemphys.2008.08.043.

    Google Scholar 

  28. LIN J, OZAN S, MUNIR K, WANG K, TONG X, LIY, LI G, WEN C. Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti-Ta-Hf-Zr alloy [J]. RSC Advances, 2017, 7(20): 12309–12317. DOI: https://doi.org/10.1039/c6ra28464g.

    Google Scholar 

  29. MORENO J M C, VASILESCU E, DROB P, OSICEANU P, VASILESCU C, DROB S I, POPA M. Surface and electrochemical characterization of a new ternary titanium based alloy behaviour in electrolytes of varying pH [J]. Corrosion Science, 2013, 77(12): 52–63. DOI: https://doi.org/10.1016/j.corsci.2013.07.026.

    Google Scholar 

  30. HSIUNG L M, LASSILA D H. Shock-induced deformation twinning and omega transformation in tantalum and tantalum-tungsten alloys [J]. Acta Materialia, 2000, 48(20): 4851–4865. DOI: https://doi.org/10.1016/s1359-6454(00)00287-1.

    Google Scholar 

  31. DEY G K, TEWARQI R, BANERJEE S, JYOTI G, GUPTA S C, JOSHI K D, SIKKA S K. Formation of a shock deformation induced ω phase in Zr20Nb alloy [J]. Acta Materialia, 2004, 52(18): 5243–5254. DOI: https://doi.org/10.1016/j.actamat.2004.07.008.

    Google Scholar 

  32. YEDDU H K, LOOKMAN T, SAXENA A. The simultaneous occurrence of martensitic transformation and reversion of martensite [J]. Materials Science and Engineering A, 2014, 594(594): 48–51. DOI: https://doi.org/10.1016/j.msea.2013.11.036.

    Google Scholar 

  33. ZHANAL P, HARCUBA P, HÁJEK M, SMOLA B, STRASKY J, SMILAUEROVA J, VESELY J, JANECEK M. Evolution of to phase during heating of metastable β titanium alloy Ti-15Mo [J]. Journal of Materials Science, 2018, 53(1): 837–845. DOI: https://doi.org/10.1007/s10853-017-1519-2.

    Google Scholar 

  34. HAO Y L, YANG R, NIINOMI M, KURODA D, ZHOU Y L, FUKUNAGA K, SUZUKI A. Aging response of the Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications [J]. Metallurgical and Materials Transaction-Springer A, 2003, 34(4): 1007–1012. DOI: https://doi.org/10.1007/s11661-003-0230-x.

    Google Scholar 

  35. WANG B, RUAN W, LIU J, ZHANG T, YANG H, RUAN J. Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti-Zr alloys for dental application [J]. Journal of Biomaterials Applications, 2018, 33(6): 766–775. DOI: https://doi.org/10.1177/0885328218811052.

    Google Scholar 

  36. MURRAY J L. The Ti-Zr (titanium-zirconium) system [J]. Bulletin of Alloy Phase Diagrams, 1981, 2: 197–201. DOI: https://doi.org/10.1007/BF02881478.39.

    Google Scholar 

  37. ASSIS S L, COSTA I. Electrochemical evaluation of Ti-13Nb-13Zr, Ti-6Al-4V and Ti-6Al-7Nb alloys for biomedical application by long-term immersion tests [J]. Materials and Corrosion, 2015, 58(5): 329–333. DOI: https://doi.org/10.1002/maco.200604027

    Google Scholar 

  38. YU Z. Evalution of haemocompatibility of TLM titaniun alloy with surfance herpairnization [J]. Rare Metal Materials and Engineering, 2009, 38(3): 932.

    Google Scholar 

  39. CORNE P, MARCH P D, CLEYMAND F, GERINGER J. Fretting-corrosion behavior on dental implant connection in human saliva [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94: 86–92. DOI: https://doi.org/10.1016/j.jmbbm.2019.02.025.

    Google Scholar 

  40. NIE L, ZHAN Y, HU T, CHEN X, WANG C. β-type Zr-Nb-Ti biomedical materials with high plasticity and low modulus for hard tissue replacements [J]. Journal of the Mechanical Behavior Materials, 2014, 29: 1–6. DOI: https://doi.org/10.1016/j.jmbbm.2013.08.019.

    Google Scholar 

  41. KONDO R, NOMURA N, SUYALATU, TSUT SUMI Y, DOI H, HANAWA T. Microstructure and mechanical properties of as-cast Zr-Nb alloys [J]. Acta Biomaterials 2011, 7(12): 4278–4284. DOI: https://doi.org/10.1016/j.actbio.2011.07.020.

    Google Scholar 

  42. ZHOU Y L, NIINOMI M, AKAHORIT, FUKUI H, TODA H. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications [J]. Materials Science and Engineering A, 2005, 398(1): 28–36. DOI: https://doi.org/10.1016/j.surfcoat.2005.04.044

    Google Scholar 

  43. BOLAT G, IZQUIERDO J, SANTANA J J, MARECI D, SOUTO R M. Electrochemical characterization of ZrTi alloys for biomedical applications [J]. Electrochimica Acta, 2013, 106: 432–439. DOI: https://doi.org/10.1016/j.electacta.2012.10.026.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-lin Yang  (杨海林) or Jing-lei Miao  (苗惊雷).

Additional information

Foundation item: Project(51404302) supported by the National Natural Science Foundation of China; Project(QJ2018003A) supported by the Youth Scientific Research Foundation of the Central South University of Forestry and Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Gl., Yang, Hl., Xing, Hx. et al. Effect of Ti on microstructure, mechanical properties and corrosion resistance of Zr-Ta-Ti alloys processed by spark plasma sintering. J. Cent. South Univ. 27, 2185–2197 (2020). https://doi.org/10.1007/s11771-020-4440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4440-9

Key words

关键词

Navigation