Skip to main content
Log in

Effect of sintering procedure on microstructure and mechanical properties of biomedical TiNbSn alloy produced via powder metallurgy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

New Ti-based alloys have recently attracted great attention in biomedical implementations due to their high strength, good biocompatibility, shape memory feature, low density and corrosion resistance. In this study, Ti-16 at% Nb-4 at% Sn alloy was produced by powder metallurgy for use as a biomaterial. In addition, the effects of sintering temperature and sintering time on the microstructure and mechanical properties of the alloy were investigated. The results indicated that β phase was dominate and α phase was seen as secondly phase in the microstructures of the sintered samples. As sintering temperature and sintering time increase, the porosity decreases, and compressive strength raised depending on decreasing porosity. Elastic modules of samples produced via powder metallurgy (PM) are close to that of natural bone; hence, the samples do not cause bone abrasion when combined with bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Kaya, F. Yakuphanoğlu, A study on microstructure of porous TiNbZr alloy produced as biomaterial. Materialwiss. Werkstofftech. 50, 742–746 (2019)

    Article  Google Scholar 

  2. M. Kaya, F. Yakuphanoglu, E. Elibol Annac, M. Köm, Microstructure characterization and biocompatibility behaviour of TiNbZr alloy fabricated by powder metallurgy. Mater. Res. Express. 6, 1–12 (2019)

    Google Scholar 

  3. N. Masahashi, Y. Mori, H. Tanaka, A. Kogure, H. Inoue, K. Ohmura, Y. Kodama, M. Nishijima, E. Itoi, S. Hanada, Bioactive TiNbSn alloy prepared by anodization in sulfuric acid electrolytes. Mater. Sci. Eng. C 98, 753–763 (2019)

    Article  Google Scholar 

  4. M. Kaya, O. Cakmak, Shape memory behavior of porous NiTi Alloy. Mater. Trans. A. 47A, 1499–1503 (2016)

    Article  Google Scholar 

  5. P. Li, X. Ma, D. Wang, H. Zhang, Microstructural and mechanical properties of β-Type Ti–Nb–Sn biomedical alloys with low elastic modulus. Metal. 9, 1–16 (2019)

    Google Scholar 

  6. M. Eskil, The effect of aging temperature on transformation parameters of porous NiTi shape memory alloy fabricated by SHS. Russ. J. Non-Ferr. Met. 54, 104–111 (2012)

    Article  Google Scholar 

  7. S.L. Zhu, X.J. Yang, F. Hu, S.H. Deng, Z.D. Cui, Precessing of porous NiTi shape memory alloy from elemental powders by Ar-sintering. Mater. Lett. 58, 2369–2373 (2004)

    Article  Google Scholar 

  8. J. Xiong, Y. Li, P.D. Hodgson, C. Wen, Nanohydroxyapatite coating on a titanium–niobium alloy by a hydrothermal process. Acta Biomater. 6, 1584–1590 (2010)

    Article  Google Scholar 

  9. T. Kunii, Y. Mori, H. Tanaka, A. Kogure, M. Kamimura, N. Mori, S. Hanada, N. Masahashi, E. Itoi, Improved osseointegration of a TiNbSn alloy with a low young’s modulus treated with anodic oxidation. Sci. Rep. 9, 1–10 (2019)

    Google Scholar 

  10. E. Yılmaz, A. Gökçe, F. Findik, H.O. Gülsoy, Characterization of biomedical Ti-16Nb-(0–4)Sn alloys produced by powder injection molding. Vacuum 142, 164–174 (2017)

    Article  ADS  Google Scholar 

  11. N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, M. Niinomi, Experiment study on fracture fixation with low rigidity titanium alloy: Plate fixation of tibia fracture model in rabbit. J. Mater. Sci. Mater. Med. 19, 1581–1586 (2008)

    Article  Google Scholar 

  12. T.F. Azevedo, T.N. Lima, M.D. Macedo, J.G. Blas, S. Griza, The mechanical behavior of TiNbSn alloys according to alloying contents, cold rolling and aging. J. Mech. Behav. Biomed. Mater. 75, 33–40 (2017)

    Article  Google Scholar 

  13. L.C. Zhang, L.Y. Chen, A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 21, 1–29 (2019)

    ADS  Google Scholar 

  14. H. Matsumoto, S. Watanable, S. Hanada, Beta TiNbSn alloys with low young’s modulus and high strength. Mater. Trans. 46, 1070–1078 (2005)

    Article  Google Scholar 

  15. R.P. Kolli, A. Devaraj, A review of metastable beta titanium alloys. Metals 506, 1–41 (2018)

    Google Scholar 

  16. T.K. Jung, H.S. Lee, S. Semboshi, N. Masahashi, T. Abumiya, S. Hanada, Mechanical properties graded Ti alloy implants for orthopedic applications. Mater. Sci. Forum. 631, 205–2010 (2009)

    Article  Google Scholar 

  17. X. Rao, C.L. Chun, Y.Y. Zheng, Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method. J. Mech. Behav. Biomed. Mater. 34, 27–36 (2014)

    Article  Google Scholar 

  18. P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, A. Robin, R. Caram, Effects of Sn addition on the microstructure, mechanical properties and corrosion behavior of Ti–Nb–Sn alloys. Mater. Charact. 96, 273–281 (2014)

    Article  Google Scholar 

  19. A. Yolun, M. Simsek, M. Kaya, E.E. Annac, M. Kom, O. Cakmak, Fabrication, characterization, and in vivo biocompatibility evaluation of titanium-niobium implants. Proc IMechE Part H: J Engineering in Medicine 235(1), 99–108 (2021)

    Google Scholar 

  20. T.K. Jung, S. Semboshi, N. Masahashi, S. Hanada, Mechanical properties and microstructures of beta Ti-25Nb-11Sn ternary alloy for biomedical applications. Mater. Sci. Eng. C. 33, 1629–1635 (2013)

    Article  Google Scholar 

  21. K. Miura, N. Yamada, S. Hanada, T.K. Jung, E. Itoi, The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low young’s modulus. Acta Biomater. 7, 2320–2326 (2011)

    Article  Google Scholar 

  22. A.J. Varkey, Antibacterial properties of some metals and alloys in combating coliforms in contaminated water. Sci. Res. Essays. 5(24), 3834–3839 (2010)

    Google Scholar 

  23. M.K. Ibrahim, E. Hamzah, S.N. Saud, Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 0.25, 0.5 and 1.5) SMAs. J. Mater. Eng. Perform. 28, 382–393 (2019)

    Article  Google Scholar 

  24. S.M. Amininezhad, A. Rezvani, M. Amouheidari, S.M. Amininejad, S. Rakhshani, The antibacterial activity of SnO2 nanoparticles Against escherichia coli and staphylococcus aureus. Zahedan J. Res. Med. Sci. 17(9), 1–5 (2015)

    Article  Google Scholar 

  25. E. Yılmaz, A. Gökçe, F. Findik, H.O. Gülsoy, Powder metallurgy processing of Ti–Nb based biomedical alloys. Acta Phys. Pol. A. 134, 278–280 (2018)

    Article  ADS  Google Scholar 

  26. X. Wang, Y. Chen, L. Xu, Z. Liu, K.-D. Woo, Effects of Sn content on the microstructure, mechanical properties and biocompatibility of Ti–Nb–Sn/hydroxyapatitebiocomposites synthesized by powder metallurgy. Mater. Des. 49, 511–519 (2013)

    Article  Google Scholar 

  27. T.F. Azevedo, T.N. Lima, M.D. Macedo, J.G. de Blas, S. Griza, Fracture mechanics behavior of TiNbSn alloys as a function of alloy content, cold working and aging. Eng. Fracture Mech. 229, 106946 (2020)

    Article  Google Scholar 

  28. W.N.S.W. Nawai, N.A. Kasani, R. Nordin, Z. Arifin, S. Shamsuddin, Effect of sintering temperature on microstructure and mechanical properties of Ti-Nb-Sn-HA composites produced by powder metallurgy. App. Mech. Mater. 625, 180–183 (2014)

    Article  Google Scholar 

  29. M. Kaya, Ö. Çakmak, B. Gülenç, K.C. Atlı, Thermomechanical cyclic stability of porous NiTi shape memory alloy. Mater. Res. Bull. 95, 243–247 (2017)

    Article  Google Scholar 

  30. M. Mour, D. Das, T. Winkler, E. Hoenig, G. Mielke, M.M. Morlock, A.F. Schilling, Advances in porous biomaterials for dental and orthopaedic applications. Mater. 3(5), 2947–2974 (2010)

    Article  Google Scholar 

  31. G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications. Biomater. 27(13), 2651–2670 (2006)

    Article  Google Scholar 

  32. O. Khalifa, E. Wahab, A. Tilp, The effect of Sn and TiO2 nano particles added in electroless Ni-P plating solution on the properties of composite coatings. Aust. J. Basic Appl. Sci. 5(6), 136–144 (2011)

    Google Scholar 

  33. S. Ehtemam-Haghighi, H. Attar, I.V. Okulov, M.S. Dargusch, D. Kent, Microstructural evolution and mechanical properties of bulk and porous low-cost TieMoeFe alloys produced by powder metallurgy. J. Alloys Compd. 853, 156768 (2021)

    Article  Google Scholar 

  34. K.A. Nazari, A. Nouri, T. Hilditcz, Mechanical properties and microstructure of powder metallurgy Ti–xNb–yMo alloys for implant materials. Mater. Des. 88, 1164–1174 (2015)

    Article  Google Scholar 

  35. A. Nouri, P.D. Hodgson, C.E. We, Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater. 6, 1630–1639 (2010)

    Article  Google Scholar 

  36. M. Kaya, A. Yolun, O. Çakmak, F. Yakuphanoğlu, E. Elibol, M. Köm, M. Güvenç, Production of titanium based porous TiNb alloy for biomedical applications. Nev. Bil. Tekn. Der. 7, 49–59 (2018)

    Google Scholar 

  37. O. Cakmak, “Investigation of Biocompatibility Property and Production of TiNbSn Alloys by Powder Metallurgy,” Msc Thesis. Adıyaman University, (2017).

  38. O. Cakmak, M. Kaya, Thermodynamics of Smart Materiel Shape Memory Alloys. Nev. Bil. Tekn. Der. 6(2), 541–555 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Scientific Research Projects Coordination of Adıyaman University for Master thesis (Project No: MÜFLTP/2017-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Çakmak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, Ö., Kaya, M. Effect of sintering procedure on microstructure and mechanical properties of biomedical TiNbSn alloy produced via powder metallurgy. Appl. Phys. A 127, 561 (2021). https://doi.org/10.1007/s00339-021-04678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04678-4

Keywords

Navigation