Skip to main content

Advertisement

Log in

The second wind-tunnel test of DLR’s multiple swashplate system

IBC on a five-bladed rotor with fuselage-mounted (fixed frame) actuators

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

After proving its individual blade control (IBC) capabilities on a four-bladed rotor system in the wind tunnel, the DLR’s multiple swashplate system and its control software were developed further to allow IBC operation on a five-bladed rotor system. After preliminary tests in hover conditions, a second wind-tunnel test was performed in the DNW-LLF wind tunnel in late 2016. The goal of this test on a Mach-scaled model rotor was to reduce vibration, noise, and required rotor power in different flight conditions using proven IBC strategies as well as localized pitch control (LPC) on five blades. In descent flight condition, significant reductions of blade–vortex interaction noise relative to the baseline case were achieved on both sides of the rotor disk through the application of 2/rev higher harmonic control as well as using an LPC schedule. Through the application of 3/rev IBC as well as a vibration controller using a 4–6/rev multi-harmonic IBC signal, 5/rev hub loads were reduced significantly and the 5/rev vertical vibrations were nearly eliminated. In addition, during simulated high-speed-level flight with a wind speed of 76 m/s, the required rotor power was successfully reduced using a 2/rev input with an amplitude of 1\(^\circ\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Abbreviations

\(C_\mathrm{{T}}\) :

Thrust coefficient

\(F_{x,y,z}\) :

Hub forces (non-rotating frame) (N)

\(I_\mathrm{{BM},5}\) :

Index for blade-bending moments with influence on 5/rev hub loads

\(M_{x,y,z}\) :

Hub moments (non-rotating frame) (Nm)

\(N_\mathrm{{b}}\) :

Number of blades

p :

Pressure (kPa)

r :

Radial coordinate (m)

R :

Rotor radius (m)

\(VI_{5}\) :

Weighted 5/rev vibration intrusion index

\(V_{\infty }\) :

Wind speed (m/s)

\(y_\mathrm{{tip,el}}\) :

Elastic lag displacement at the blade tip

\(z_\mathrm{{tip,el}}\) :

Elastic flap displacement at the blade tip

\(\alpha _\mathrm{{S}}\) :

Rotor shaft angle (\(^\circ\))

\(\beta _\mathrm{{PC}}\) :

Pre-cone angle (\(^\circ\))

\(\gamma\) :

Flight path angle of the model (\(^\circ\))

\(\Theta _{0,\mathrm{{C,S}}}\) :

Collective and cyclic control angles (\(^\circ\))

\(\Theta _\mathrm{{dip}}\) :

LPC amplitude (\(^\circ\))

\(\Theta _{n}\) :

n/rev HHC Amplitude (\(^\circ\))

\(\sigma\) :

Solidity

\(\Phi _{1,2,H}\) :

Width of LPC slopes and plateau (\(^\circ\))

\(\phi _{n}\) :

Phase of elastic n/rev blade torsion (\(^\circ\))

\(\varphi _\mathrm{{dip}}\) :

LPC Phase (\(^\circ\))

\(\varphi _{n}\) :

n/rev HHC Phase (\(^\circ\))

\(\vartheta\) :

Individual blade-pitch angle (\(^\circ\))

\(\mu\) :

Advance ratio

\(\psi\) :

Azimuth angle (\(^\circ\))

\(\psi _{1,2,a,b}\) :

Additional LPC parameters (\(^\circ\))

\(\Omega _\mathrm{{ref}}\) :

Rotor rotational frequency, (rad/s, Hz)

BL:

Baseline

DLR:

Deutsches Zentrum für Luft- und Raum-fahrt e.V. (German Aerospace Center)

DNW:

Deutsch-Niederländische Windkänale (German-Dutch Wind Tunnels)

FTK:

Fortschrittliche Taumelscheibenkonzepte (advanced swashplate-concepts)

HART:

HHC aeroacoustics rotor test

HHC:

Higher harmonic control

h.p.:

High-pass filtered

IBC:

Individual blade control

LLF:

Large low-speed facility

LPC:

Localized pitch control

META:

MEhrfach-TAumelscheibe (multiple swashplate rotor control system)

MN, MV:

Minimum noise, minimum vibration

SKAT:

Skalierung und Risikominimierung von Technologie bei innovativem Design (Scaling and risk-minimization of technology with innovative design)

SPL:

Sound-pressure level

SPL.rel:

Sound-pressure level relative to max. level of the respective frequency range

SPR:

Stereo pattern recognition

References

  1. Kessler, C.: Active rotor control for helicopters: motivation and survey on higher harmonic control. CEAS Aeronaut. J. 1(1–4), 3–22 (2011)

    Article  Google Scholar 

  2. Kessler, C.: Active rotor control for helicopters: individual blade control and swashplateless rotor designs. CEAS Aeronaut. J. 1(1—-4), 23–54 (2011). https://doi.org/10.1007/s13272-011-0001-0

    Article  Google Scholar 

  3. Friedmann, P.P.: On-blade control of rotor vibration, noise, and performance: just around the corner? J. Am. Helicopter Soc. 4(59), 1–37 (2014)

    Article  Google Scholar 

  4. Yu, Y.H., Gmelin, B., Heller, H., Philippe, J.J., Mercker, E., Preisser, J.S.: HHC aeroacoustics rotor test at the DNW—the Joint German/French/US HART Project. In: 20th European Rotorcraft Forum. Amsterdam, The Netherlands (1994)

  5. Splettstoesser, W.R., Kube, R., Wagner, W., Seelhorst, U., Boutier, A., Micheli, F., Mercker, E., Pengel, K.: Key results from a higher harmonic control aeroacoustic rotor test (HART). J. Am. Helicopter Soc. 42(1), 58–78 (1997)

    Article  Google Scholar 

  6. van der Wall, B.G., Junker, B., Burley, C.L., Brooks, T.F., Yu, Y.H., Tung, C., Raffel, M., Richard, H., Wagner, W., Mercker, E., Pengel, K., Holthusen, H., Beaumier, P., Delrieux, Y.: The HART II test in the LLF of the DNW—a major step towards rotor wake understanding. In: 28th European Rotorcraft Forum. Bristol, UK (2002)

  7. van der Wall, B.G., Lim, J.W., Smith, M.J., Jung, S.N., Bailly, J., Baeder, J.D., Boyd, D.D.: The HART II international workshop: an assessment of the state-of-the-art in comprehensive code prediction. CEAS Aeronaut. J. 4(3), 223–252 (2013)

    Article  Google Scholar 

  8. van der Wall, B.G., Bartels, R.: Patent für eine Hubschrauber-Rotorsteuereinrichtung. Pat.-Nr.: DE-10-2006-030-089-D, Deutsches Patent- und Markenamt (2008)

  9. Küfmann, P.: Patent für ein Verfahren zum Ermitteln von Stellgrößen. Pat.-Nr.: DE-10-2010-024-089-B4, Deutsches Patent- und Markenamt (2013)

  10. Bartels, R., Küfmann, P., Kessler, C.: Novel concept for realizing individual blade control (IBC) for Helicopters. In: 36th European Rotorcraft Forum. Paris, Frankreich (2010)

  11. Küfmann, P., Bartels, R., Kessler, C., van der Wall, B.G.: On the design and development of a multiple-swashplate control system for the realization of individual blade control for helicopters. In: 67th Annual Forum of the American Helicopter Society. Virginia Beach, VA, U.S.A. (2011)

  12. Küfmann, P., Bartels, R., Schneider, O.: DLR’s multiple swashplate control system: operation and preliminary testing. In: 38th European Rotorcraft Forum. Amsterdam, The Netherlands (2012)

  13. Küfmann, P., Bartels, R., van der Wall, B.G., Schneider, O., Holthusen, H., Gomes, J., Postma, J.: The first wind tunnel test of the multiple swashplate system: test procedure and principal results. J. Am. Helicopter Soc. 62(4), 1–13 (2017)

    Article  Google Scholar 

  14. Küfmann, P., Brillante, C.: Implementation and test of a semi-closed Loop HHC-algorithm with the DLR’s multiple swashplate system. In: 41th European Rotorcraft Forum. Munich, Germany (2015)

  15. Malovrh, B., Gandhi, F.: Localized individual blade root pitch control for helicopter blade-vortex interaction noise reduction. J. Am. Helicopter Soc. 55(3), 32007 (2010)

    Article  Google Scholar 

  16. Kody, F., Corle, E., Maughmer, M.D., Schmitz, S.: Non-harmonic deployment of trailing-edge flaps for rotor-performance enhancement and vibration reduction. In: 5th Decennial AHS Aeromechanics Specialists’ Conference. American Helicopter Society Inc., San Francisco, CA, U.S.A. (2014)

  17. Küfmann, P., Bartels, R., Wall, B.G.: Localized blade-root IBC for rotor-performance enhancement and vibration reduction. In: 40th European Rotorcraft Forum. Southampton, UK (2014)

  18. Kody, F., Corle, E., Maughmer, M.D., Schmitz, S.: Higher-harmonic deployment of trailing-edge flaps for rotor-performance enhancement and vibration reduction. J. Aircraft 53(2), 1–10 (2015)

    Google Scholar 

  19. Küfmann, P., Bartels, R., van der Wall, B.G.:: Rotor performance enhancement via localized pitch control and its effects on hub vibrations and pitch link loads. CEAS Aeronaut. J. 8(1), 181–196 (2017). https://doi.org/10.1007/s13272-016-0233-0

    Article  Google Scholar 

  20. Splettstoesser, W.R., Schultz, K.J., Kube, R., Brooks, T.F., Booth, E., Niesl, G., Streby, O.: A higher harmonic control test in the DNW to reduce impulsive BVI noise. J. Am. Helicopter Soc. 39(4), 3–13 (1994)

    Article  Google Scholar 

  21. Crews, S., Hamilton, B.: Army helicopter crew seat vibration—past performance, future requirements. In: American Helicopter Society North East Region National Specialists’ meeting on helicopter vibration (1981)

  22. AMCOM: ADS-27A-SP-requirements for rotorcraft vibration specifications, modeling and testing (2006). https://www.amrdec.army.mil/amrdec/rdmr-se/tdmd/Documents/001a.pdf

  23. Johnson, W.: Self-tuning regulators for multicyclic control of helicopter vibration. NASA Technical Paper TP-1996 (A-8719) (1982)

  24. Morales, R.M., Turner, M.C., Court, P., Hutchin, C.: Actuator constraints handling in higher harmonic control algorithms for vibration reduction. In: Proceedings of the 40th European Rotorcraft Forum. Southampton, UK (2014)

  25. Schneider, O., van der Wall, B.G., Pengel, K.: HART II blade motion measured by stereo pattern recognition (SPR). In: Proceedings of the 59\(^th\) Annual forum of the American Helicopter Society. Phoenix, AZ, U.S.A. (2003)

  26. Schneider, O.: Analysis of SPR measurements from HART II. Aerosp. Sci. Technol. 9(5), 409–420 (2005)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The tests in the DNW wind tunnel were conducted within the framework of the national research project SKAT (Scaling and risk-minimization of technology with innovative design) funded by the German Federal Ministry of Economic Affairs and Energy. The authors would like to express their gratitude towards everyone involved at DLR and DNW during the planning, preparation, and execution of the SKAT wind-tunnel test and the subsequent data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bartels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Küfmann, P.M., Bartels, R., van der Wall, B.G. et al. The second wind-tunnel test of DLR’s multiple swashplate system. CEAS Aeronaut J 10, 385–402 (2019). https://doi.org/10.1007/s13272-018-0323-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-018-0323-2

Keywords

Navigation