Skip to main content

Vertical-Axis Wind Turbine Aerodynamics

  • Reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

Horizontal-axis wind turbines (HAWTs) are widely studied and have proven their technological capabilities. However, wind turbines are moving into new environments, such as floating far-offshore or urban applications, where the operational conditions are significantly different. Vertical-axis wind turbines (VAWTs) could be more suitable and compatible in these environments, hence, the interest in VAWTs is rekindling. Although vertical-axis wind turbines have a long history, the behavior of these turbines and their complex flow field is still not fully understood. The lack of understanding the complex unsteady aerodynamics of VAWTs and the challenge to predict the loads and performance of this kind of turbines accurately, has led to systematic failures and as such variable interest in VAWTs throughout history. Advancing the understanding and modeling of VAWT’s aerodynamics will be crucial to advance the technology further.

This chapter highlights the main aerodynamic phenomena and challenges of vertical-axis wind turbines. First, an introduction is provided on the VAWT history and (dis-)advantages. The basics of VAWT aerodynamics and the various rotor simplifications/representations are presented. Further, the state-of-the art aerodynamic modeling techniques, specifically for VAWTs, are discussed. Since VAWTs are inherently unsteady, the main unsteady phenomena that play a crucial role in VAWT aerodynamics are summarized. Finally, wake aerodynamics and the importance of airfoil design for VAWTs are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adema N, Kloosterman M, Schepers G (2020) Development of a second-order dynamic stall model. Wind Energy Sci 5(2):577–590

    Article  Google Scholar 

  • Bachant P, Wosnik M (2015) Characterising the near-wake of a cross-flow turbine. J Turbul 16(4):392–410

    Article  Google Scholar 

  • Bangga G, Dessoky A, Lutz T, Krxxxomlaxxxmer E (2019) Improved double-multiple-streamtube approach for H-Darrieus vertical axis wind turbine computations. Energy 182:673–688

    Article  Google Scholar 

  • Bangga G, Dessoky A, Wu Z, Rogowski K, Hansen MOL (2020a) Accuracy and consistency of cfd and engineering models for simulating vertical axis wind turbine loads. Energy 206:118087

    Article  Google Scholar 

  • Bangga G, Lutz T, Arnold M (2020b) An improved second-order dynamic stall model for wind turbine airfoils. Wind Energy Sci 5(3):1037–1058

    Article  Google Scholar 

  • Battisti L, Zanne L, Dell’Anna S, Dossena V, Persico G, Paradiso B (2011) Aerodynamic measurements on a vertical axis wind turbine in a large scale wind tunnel. J Energy Res Technol 133(3):031201

    Article  Google Scholar 

  • Beddoes TS (1987) A near wake dynamic model. In: Proceedings of the AHS national specialist meeting on aerodynamics and aeroacoustics

    Google Scholar 

  • Borg M, Shires A, Collu M (2014) Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part I: aerodynamics. Renew Sustain Energy Rev 39:1214–1225

    Article  Google Scholar 

  • Cardona JL (1984) Flow curvature and dynamic stall simulated with an aerodynamic free-vortex model for VAWT. Wind Eng 9(3):135–143

    Google Scholar 

  • Carr LW (1988) Progress in analysis and prediction of dynamic stall. J Aircraft 25(1):6–17

    Article  Google Scholar 

  • Chatelain P, Duponcheel M, Zeoli S, Buffin S, Caprace D-G, Winckelmans G, Bricteux L (2017) Investigation of the effect of inflow turbulence on vertical axis. J Phys Conf Ser 854:012011

    Article  Google Scholar 

  • Claessens MC (2006) The design and testing of airfoils for application in small vertical axis wind turbines. Msc thesis, Delft University of Technology

    Google Scholar 

  • De Tavernier D (2021) Aerodynamic advances in Vertical-Axis Wind Turbines. PhD thesis, Delft University of Technology

    Google Scholar 

  • De Tavernier D, Ferreira C (2019) An extended actuator cylinder model: actuator-in-actuator cylinder (AC-squared) model. Wind Energy 22:1058–1070

    Google Scholar 

  • De Tavernier D, Ferreira C, Bussel G (2019) Airfoil optimisation for vertical axis wind turbines with variable pitch. Wind Energy 22(4):547–562

    Article  Google Scholar 

  • De Tavernier D, Sakib M, Griffith T, Pirrung G, Paulsen U, Madsen H, Keijer W, Ferreira C (2020a) Comparison of 3d aerodynamic models for vertical-axis wind turbines: H-rotor and phi-rotor. J Phys Conf Ser 1618:052041

    Google Scholar 

  • De Tavernier D, Ferreira C, Paulsen U, Madsen H (2020b) The 3D effects of a vertical-axis wind turbine: rotor and wake induction. J Phys Conf Ser 1618:052040

    Google Scholar 

  • Durand WF (1935) Aerodynamic theory – volume II division E general aerodynamic theory. Springer, Berlin

    Google Scholar 

  • Dyachuk E, Goude A (2015) Simulating dynamic stall effects for vertical axis wind turbines applying a double multiple streamtube model. Energies 8(2):1353–1372

    Article  Google Scholar 

  • Ferreira CS (2009) The near wake of the VAWT. PhD thesis, Delft University of Technology

    Google Scholar 

  • Ferreira CS, Geurts B (2015) Aerofoil optimization for vertical-axis wind turbines. Wind Energy 18(8):1371–1385

    Article  Google Scholar 

  • Ferreira CS, Scheurich F (2014) Demonstrating that power and instantaneous loads are decoupled in a vertical-axis wind turbine. Wind Energy 17(3):385–396

    Article  Google Scholar 

  • Ferreira CS, Madsen HA, Barone M, Roscher B, Deglaire P, Arduin I (2014) Comparison of aerodynamic models for vertical axis wind turbines. J Phys Conf Ser 524:012125

    Article  Google Scholar 

  • Ferreira CS, Barone MF, Zanon A, Kemp R, Giannattasio P (2015) Airfoil optimization for stall regulated vertical axis wind turbines. In: AIAA SciTech forum: 33rd wind energy symposium, (2015-0722)

    Google Scholar 

  • Galbraith R, Coton F, Dachun J (1992) Aerodynamic design of vertical axis wind turbines. Report 9246, Glasgow University

    Google Scholar 

  • Gormont RE (1973) A mathematical model of unsteady aerodynamics and radial flow for application to helicopter rotors. Report, Boeing Vertol

    Google Scholar 

  • Goude A (2012) Fluid mechanics of vertical axis turbines – simulations and model development. PhD thesis, Uppsala University

    Google Scholar 

  • Griffith DT, Paquette J, Barone M, Goupee AJ, Fowler MJ, Bull D, Owens B (2016) A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines. J Phys Conf Ser 753:102003

    Article  Google Scholar 

  • Griffith DT, Barone M, Paquette J, Owens B, Bull D, Ferreira CS, Goupee A, Fowler M (2018) Design studies for deep-water floating offshore vertical axis wind turbines. Report SAND2018-7002, Sandia National Laboratories

    Google Scholar 

  • Gross D, Harris FD (1969) Prediction of inflight stalled airloads from oscillating airfoil data. In: Proceedings of the 25th annual forum of the American helicopter society

    Google Scholar 

  • Hansen MOL (2008) Aerodynamics of wind turbines, 2nd edn. Earthscan/Routledge, Chichester

    Google Scholar 

  • Hara Y, Suzuki T, Ochiai Y, Hayashi T (2011) Velocity field measurements in wake of a straight-bladed vertical axis wind turbine

    Google Scholar 

  • Hara Y, Kawamura T, Akimoto H, Tanaka K, Nakamura T, Mizumukai K (2014) Predicting double-blade vertical axis wind turbine performance by a quadruple-multiple streamtube model. Int J Fluid Mach Syst 7(1):16–27

    Article  Google Scholar 

  • Hirsch C, Mandal AC (1985) Flow curvature effect on vertical axis Darrieus wind turbine having high chord-radius ratio. In: Proceedings of the European wind energy conference, pp 405–410

    Google Scholar 

  • Kato Y, Seki K, Shimizu Y (1980) Vertical axis wind turbine designed aerodynamically at Tokai university. Report, Tokai University

    Google Scholar 

  • Katz J, Plotkin A (2001) Low speed aerodynamics, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kinzel M, Mulligan Q, Dabiri JO (2012) Energy exchange in an array of vertical-axis wind turbines. J Turbul 13:1–13

    Article  MathSciNet  Google Scholar 

  • Kirke BK (1998) Evaluation of self-starting vertical axis wind turbines for stand-alone applications. PhD thesis, Griffith University

    Google Scholar 

  • Klimas PC (1992) Tailored airfoils for vertical axis wind turbines. Report SAND84-1062, Sandia National Laboratories

    Google Scholar 

  • Kumar PM, Sivalingam K, Lim T-C, Ramakrishna S, Wei H (2019) Review on the evolution of Darrieus vertical axis wind turbine: large wind turbines. Clean Technol 1(1):205–223

    Article  Google Scholar 

  • Leishman JG (2006) Principles of helicopter aerodynamics, vol 2. Cambridge university Press, Cambridge

    Google Scholar 

  • Leishman JG, Beddoes T (1989) A semi-empirical model for dynamic stall. J Am Helicopter Soc 34(3):3–17

    Google Scholar 

  • Li A (2017) Double actuator cylinder (AC) model of a tandem verticalaxis wind turbine (VAWT) counter-rotating rotor concept operating in different wind conditions. Msc thesis, Technical University of Denmark, Delft University of Technology

    Google Scholar 

  • Madsen HA (1982) The Actuator Cylinder – a flow model for vertical axis wind turbines. The institute of industrial constructions and energy technology

    Google Scholar 

  • Madsen HA (1983) On the ideal and real energy conversion in a straight bladed vertical axis wind turbine. PhD thesis, Aalborg University

    Google Scholar 

  • Madsen HA (1985) Actuator cylinder: a flow model for vertical axis wind turbines. In: Proceedings of the BWEA wind energy conference (British Wind Energy Association), pp 147–154

    Google Scholar 

  • Madsen HA, Larsen TJ, Vita L, Paulsen US (2013) Implementation of the Actuator Cylinder flow model in the HAWC2 code for aeroelastic simulations on vertical axis wind turbines. In: Proceedings of 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, (2013-0913)

    Google Scholar 

  • Mendoza V, Goude A (2019) Improving farm efficiency of interacting vertical-axis wind turbines through wake deflection using pitched struts. Wind Energy 22(4):538–546

    Article  Google Scholar 

  • Mendoza V, Chaudhari A, Goude A (2018) Performance and wake comparison of horizontal and vertical axis wind turbines under varying surface roughness conditions. Wind Energy 22(4):458–472

    Article  Google Scholar 

  • Migliore PG (1983) Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines. J Energy 7(4):291–292

    Article  Google Scholar 

  • Migliore PG, Wolfe WP, Fanucci JB (1980) Flow curvature effects on Darrieus turbine blade aerodynamics. J Energy 4(2):49–55

    Article  Google Scholar 

  • Möllerström E, Gipe P, Beurskens J, Ottermo F (2019) A historical review of vertical axis wind turbines rated 100 kw and above. Renew Sustain Energy Rev 105:1–13

    Article  Google Scholar 

  • Moran WA (1977) Giromill wind tunnel test and analysis. Report, U.S. Energy Research and Development Administration

    Google Scholar 

  • Ning A (2016) Actuator Cylinder theory for multiple vertical axis wind turbines. Wind Energy Sci 1(2):327–340

    Article  Google Scholar 

  • Paraschivoiu I (1988) Double-multiple stream tube model for studying vertical-axis wind turbines. J Propuls Power 4(4):370

    Article  Google Scholar 

  • Paraschivoiu I (2002) Wind turbine design with emphasis on Darrieus. Polythecnic International Press, Montreal

    Google Scholar 

  • Peng HY, Lam HF, Lee CF (2016) Investigation into the wake aerodynamics of a five-straight-bladed vertical axis wind turbine by wind tunnel tests. J Wind Eng Ind Aerodyn 155:23–35

    Article  Google Scholar 

  • Pirrung GR, Madsen HA, Kim T, Heinz J (2016) A coupled near and far wake model for wind turbine aerodynamics. Wind Energy 19(11):2053–2069

    Article  Google Scholar 

  • Pirrung GR, Riziotis V, Madsen HA, Hansen M, Kim T (2017a) Comparison of a coupled near- and far-wake model with a free-wake vortex code. Wind Energy Sci 2(1):15–33

    Article  Google Scholar 

  • Pirrung GR, Madsen HA, Schreck S (2017b) Trailed vorticity modeling for aeroelastic wind turbine simulations in standstill. Wind Energy Sci 2(2):521–532

    Article  Google Scholar 

  • Read S, Sharpe DJ (1980) An extended multiple streamtube theory for vertical axis wind turbines. In: Proceedings of the second BWEA wind energy workshop, pp 65–72

    Google Scholar 

  • Rolin VFC, Porté-Agel F (2018) Experimental investigation of vertical-axis wind-turbine wakes in boundary layer flow. Renew Energy 118:1–13

    Article  Google Scholar 

  • Snel H (1997) Heuristic modelling of dynamic stall characteristics. In: Proceedings of European wind energy conference, pp 429–433

    Google Scholar 

  • Strickland J (1975) The Darrieus turbine: a performance prediction model using multiple streamtubes. Report SAND75-041, Sandia National Laboratories

    Google Scholar 

  • Strickland J, Smith T, Sun K (1981) Vortex model of the Darrieus turbine: an analytical and experimental study. Report SAND81-7071, SANDIA National Laboratories

    Google Scholar 

  • Sutherland HJ, Berg DE, Ashwill TD (2012) A retrospective of VAWT technology. Report SAND2012-0304, Sandia National Laboratories

    Google Scholar 

  • Templin R (1974) Aerodynamic performance theory for the NRC vertical-axis wind turbine. Report LTRLA-160, National Aeronautical Establishment Laboratory

    Google Scholar 

  • Tescione G, Ragni D, He C, Ferreira CJS, van Bussel GJW (2014) Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renew Energy 70:47–61

    Article  Google Scholar 

  • Tran C, Petot D (1981) Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight. Vertica 5(1):35–53

    Google Scholar 

  • Truong V (1993) A 2D dynamic stall model based on a hopf bifurcation. In: Proceedings of 19th European rotorcraft forum

    Google Scholar 

  • Wilson R, Lissaman P (1974) Applied aerodynamics of wind powered machines. Report NSF-RAN-74-113, Oregon State University

    Google Scholar 

  • Zanon A, Giannattasio P, Simão Ferreira CJ (2015) Wake modelling of a VAWT in dynamic stall: impact on the prediction of flow and induction fields. Wind Energy 18(11):1855–1874

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine De Tavernier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De Tavernier, D., Ferreira, C., Goude, A. (2022). Vertical-Axis Wind Turbine Aerodynamics. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Sun, Y. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-31307-4_64

Download citation

Publish with us

Policies and ethics