Skip to main content
Log in

The HART II international workshop: an assessment of the state-of-the-art in comprehensive code prediction

  • Review Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Significant advancements in computational fluid dynamics (CFD) and their coupling with computational structural dynamics (CSD, or comprehensive codes) for rotorcraft applications have been achieved recently. Despite this, CSD codes with their engineering level of modeling the rotor blade dynamics, the unsteady sectional aerodynamics and the vortical wake are still the workhorse for the majority of applications. This is especially true when a large number of parameter variations is to be performed and their impact on performance, structural loads, vibration and noise is to be judged in an approximate yet reliable and as accurate as possible manner. In this article, the capabilities of such codes are evaluated using the HART II International Workshop database, focusing on a typical descent operating condition which includes strong blade–vortex interactions. A companion article addresses the CFD/CSD coupled approach. Three cases are of interest: the baseline case and two cases with 3/rev higher harmonic blade root pitch control (HHC) with different control phases employed. One setting is for minimum blade–vortex interaction noise radiation and the other one for minimum vibration generation. The challenge is to correctly predict the wake physics—especially for the cases with HHC—and all the dynamics, aerodynamics, modifications of the wake structure and the aero-acoustics coming with it. It is observed that the comprehensive codes used today have a surprisingly good predictive capability when they appropriately account for all of the physics involved. The minimum requirements to obtain these results are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. The name conventions MN and MV were taken from the HART I test of 1994, despite larger HHC control angles used there.

Abbreviations

\(a_\infty\) :

Speed of sound (m/s)

c :

airfoil chord (m)

C m M 2 :

Section moment coefficient, \(C_mM^2=(dM_{c/4}/dy)/[(\rho/2)a_\infty^2c^2]\)

C n M 2 :

Section loading coefficient, \(C_nM^2=(dL/dy)/[(\rho/2)a_\infty^2c]\)

C T :

Thrust coefficient, \(C_T=T/(\rho\pi\Upomega^2R^4)\)

dL/dy :

Section lift (N/m)

dM c/4/dy :

Section moment (Nm/m)

M :

Mach number

M h :

Hover tip Mach number, \(M_h=\Upomega R/a_\infty\)

M x :

Rotor hub rolling moment (Nm)

M y :

Rotor hub pitching moment (Nm)

M :

Free-stream Mach number, \(M_\infty=V_\infty/a_\infty\)

N b :

Number of blades

p :

Static air pressure (kPa)

P :

Rotor power (kW)

r :

Non-dimensional radial coordinate

r a :

Non-dimensional root cut-out radius

r c :

Vortex core radius (m)

r c0 :

Vortex initial core radius (m)

r tw :

Non-dimensional zero twist radius

R :

Rotor radius (m)

t :

Time (s)

T :

Thrust (N)

T :

Air temperature (°C)

V :

Airspeed (m/s)

y :

Radial coordinate (m)

α :

Oseen parameter, α = 1.25643

α S :

Rotor shaft angle of attack (°)

\(\Upgamma\) :

Circulation (m2/s)

δ:

Effective viscosity coefficient, δ = 1000

\(\Updelta\alpha\) :

Wind tunnel interference angle (°)

\(\Uptheta_C\) :

Lateral cyclic pitch angle (°)

\(\Uptheta_S\) :

Longitudinal cyclic pitch angle (°)

\(\Uptheta_{el}\) :

Elastic twist angle (°)

\(\Uptheta_{tw}\) :

Linear blade twist per span (°)

\(\Uptheta_{75}\) :

Collective pitch angle at 0.75R (°)

\(\Uptheta_3\) :

HHC pitch angle at 3/rev (°)

μ :

Advance ratio, \(\mu=V_\infty\cos\alpha_S/(\Upomega R)\)

ν :

Kinematic viscosity of air (m2/s)

\(\rho_\infty\) :

Air density (kg/m3)

σ :

Rotor solidity, σ = N b c/(πR 2)

ψ :

Azimuth, \(\psi=\Upomega\)t (°)

ψ v :

Vortex age (°)

ψ 3 :

Phase of 3/rev HHC pitch angle (°)

\(\Upomega\) :

Rotor rotational frequency (rad/s)

bpf:

Blade passage frequency

BL:

Baseline case without HHC

BVI:

Blade–vortex interaction

CFD:

Computational fluid dynamics

CSD:

Computational structural dynamics

HART:

HHC aeroacoustics rotor test

HHC:

Higher harmonic control

MN:

Minimum noise case

MV:

Minimum vibration case

References

  1. Smith, M.J., Lim, J.W., van der Wall, B.G., Baeder, J.D., Biedron, R.T., Boyd, D.D. Jr., Jayaraman, B., Jung, S.N., Min, B.-Y.: An Assessment of CFD/CSD Prediction State-of-the-Art Using the HART II International Workshop Data. In: 68th Annual Forum of the American Helicopter Society, Ft. Worth, TX, May 1–3 (2012)

  2. Smith, M.J., Lim, J.W., van der Wall, B.G., Baeder, J.D., Biedron, R.T., Boyd, D.D. Jr., Jayaraman, B., Jung, S.N., Min, B.-Y.: The HART II international workshop: an assessment of the state-of-the-art in CFD/CSD prediction. CEAS Aeronaut. J. submitted (2012)

  3. van der Wall, B.G., Burley, C.L., Yu, Y.H., Pengel, K., Beaumier, P.: The HART II test—measurement of helicopter rotor wakes. Aerosp. Sci. Technol. 8(4), 273–284 (2004)

    Article  Google Scholar 

  4. Schneider, O.: Analysis of SPR Measurements of HART II. Aerosp. Sci. Technol. 9(5), 409–420 (2005)

    Article  MATH  Google Scholar 

  5. Raffel, M., Richard, H., Ehrenfried, K., van der Wall, B.G., Burley, C.L., Beaumier, P., McAlister, K., Pengel, K.: Recording and evaluation methods of PIV investigations on a helicopter rotor model. Exp. Fluids 36(1), 146–156 (2004); (Erratum in: 40(4), 665 (2006))

    Google Scholar 

  6. van der Wall, B.G., Richard, H.: Analysis methodology for 3C PIV data of rotary wing vortices. Exp. Fluids 40(5), 798–812 (2006)

    Article  Google Scholar 

  7. Lim, J.W., van der Wall, B.G.: An assessment of 3-C PIV analysis methodology for HART II measured data. AFDD Technical Report RDMR-AF-10-03; NASA TM 2010-216024 (2010)

  8. Schneider, O., van der Wall, B.G.: Comparison of Simple and Conditional Averaging Methodology Based on Results of the HART II Wind Tunnel Test. In: 1st International Forum on Rotorcraft Multidisciplinary Technology, Seoul, Korea, Oct 15–17 (2007)

  9. Lim, J.W., Nygaard, T.A., Strawn, R.C., Potsdam, M.: Blade–vortex interaction airloads prediction using coupled computational fluid and structural dynamics. J. Am. Helicopter Soc. 52(4), 318–328 (2007)

    Article  Google Scholar 

  10. Lim, J.W., Strawn, R.C.: Computational modeling of HART II blade–vortex interaction loading and wake system. J. Aircr. 45(3), 923–933 (2008)

    Article  Google Scholar 

  11. Perez, G., Bailly, J., Rahier, G.: Using the HART II database to improve BVI noise prediction. J. Am. Helicopter Soc. 53(1), 56–67 (2008)

    Article  Google Scholar 

  12. Mauffrey, Y., Rahier, G., Prieur, J.: Numerical investigation on blade/wake-interaction noise generation. J. Aircr. 46(5), 1479–1486 (2009)

    Article  Google Scholar 

  13. Min, B.-Y., Sankar, L.: Hybrid Navier–Stokes/free-wake method for modeling blade-vortex interactions. J. Aircr. 47(3), 975–982 (2010)

    Article  Google Scholar 

  14. Park, J.-S., Jung, S.N., Park, S.H., Yu, Y.H. Correlation study of a rotor in descending flight using DYMORE with a freewake model. J. Mech. Sci. Technol. 24(8), 1583–1594 (2010)

    Article  Google Scholar 

  15. Park, J.-S., Jung, S.N., You, Y.H., Park, S.H., Yu, Y.H.: Validation of comprehensive dynamics analysis predictions for a rotor in descending flight. Aircr. Eng. Aerosp. Technol. 83(2), 75–84 (2011)

    Article  Google Scholar 

  16. Kelly, M., Brown, R.: Influence of blade aerodynamic model on prediction of helicopter high-frequency airloads. J. Aircr. 48(2), 476–494 (2011)

    Article  Google Scholar 

  17. Kelly, M., Brown, R.: Influence of Blade Aerodynamic Model on Prediction of Helicopter Rotor Aeroacoustic Signatures. J. Aircr. 48(3), 1058–1083 (2011)

    Article  Google Scholar 

  18. van der Wall, B.G.: Extensions of prescribed wake modelling for helicopter rotor BVI noise investigations. CEAS Aeronaut. J. 3(1), 93–115 (2012)

    Article  Google Scholar 

  19. van der Wall, B.G.: A comprehensive rotary-wing database for code validation: the HART II international workshop. Aeronaut. J. R. Aeronaut. Soc. 115(1163), 91–102 (2011); [erratum in: 115(1166), 220 (2011)]

  20. van der Wall, B.G.: 2nd HHC Aeroacoustic Rotor Test (HART II)-Part I: Test Documentation. DLR-IB 111-2003/31, (2003)

  21. van der Wall, B.G., Burley, C.L.: 2nd HHC aeroacoustic rotor test (HART II)-Part II: representative results. DLR-IB 111-2005/03, (2005)

  22. Technical Documentation for Rotorblades acc. to Dwg. No. DSK2-01017-00. MBB Technical Documentation Report (1988)

  23. Uhle, H.: Windkanalmessungen am Profil NACA 23012 mit Original- und modifizierter Hinterkante. (Wind Tunnel Measurements of the Airfoil NACA 23012 with Original and Modified Trailing Edge), MBB TN D127-2/71 (1971)

  24. Dadone, L.U.: U.S. Army Helicopter Design Datcom. Volume I - Airfoils. USAAMRDL CR 76-2. Boeing Vertol Company, Philadelphia (1976)

  25. Furchert, R.: “Bestimmung der Eigenfrequenzen und Eigenformen von 3 Rotorblattsätzen des Rotorversuchsstands,” (Determination of Natural Frequencies and Mode Shapes of 3 Rotor Blade Sets of the Rotor Test Rig), DLR IB 111–92/11, (1992)

  26. van der Wall, B.G., Lim, J.W., Smith, M.J., Jung, S.N., Bailly, J., Baeder, J.D., Boyd, D.D.: An Assessment of Comprehensive Code Prediction State-of-the-Art Using the HART II International Workshop Data. In: 68th Annual Forum of the American Helicopter Society, Ft. Worth, TX, May 1–3, (2012)

  27. Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Phil. Trans. R. Soc. Ser. A 264(1151), 321–342 (1969)

    Article  MATH  Google Scholar 

  28. Farassat, F.: Derivation of Formulations 1 and 1A of Farassat. NASA/TM-2007-214853 (2007)

  29. Johnson, W.: Rotorcraft Aerodynamic Models for a Comprehensive Analysis. In: 54th Annual Forum of the American Helicopter Society, Washington, DC, USA, May 20–22 (1998)

  30. Johnson, W.: Influence of wake models on calculated tiltrotor aerodynamics. In: American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialists Meeting, San Francisco, CA, USA, Jan 23–25 (2002)

  31. Lim, J.W., Yu, Y.H., Johnson, W.: Calculation of rotor blade-vortex interaction airloads using a multiple-trailer free-wake model. J. Aircr. 40(6), 1123–1130 (2003)

    Article  Google Scholar 

  32. Lim, J.W., van der Wall, B.G.: Investigation of the Effect of a Multiple Trailer Free-Wake Model for Descending Flights. In: 61st Annual Forum of the American Helicopter Society, Grapevine, TX, USA, June 1–3 (2005)

  33. Hennes, C., Lopes, L., Shirey, J., Erwin, J., Brentner, K.S.: PSU-WOPWOP 3.3.3 User’s Guide. The Pennsylvania State University, University Park, PA, USA (2009)

  34. Sim, B.W., Lim, J.W.: Blade-vortex interaction (BVI) noise & airload prediction using loose aerodynamics/structural coupling. IN: 62nd Annual Forum of the American Helicopter Society, Phoenix, AZ, USA, May 9–11 (2006)

  35. Lim, J.W., Tung, C., Yu, Y.H.: Prediction of blade-vortex interaction airloads with higher-harmonic pitch controls using the 2GCHAS comprehensive code. Trans. ASME J. Press. Vessel Technol. 123(4), 469–474 (2001)

    Article  Google Scholar 

  36. Bauchau, O.A.: Dymore user manual. http://soliton.ae.gatech.edu/people/obauchau/Dwnld/dymore20/DymoreManual.pdf, Atlanta, GA, USA (2006)

  37. Peters, D.A., Karunamoorthy, S., Cao, W.-M.: Finite state induced flow models. Part I: two-dimensional thin airfoil. J. Aircr. 32(2), 313–322 (1995)

    Article  Google Scholar 

  38. Peters, D.A., He, C.J.: Finite state induced flow models. Part II: three-dimensional rotor disk. J. Aircr. 32(2), 323–333 (1995)

    Article  Google Scholar 

  39. Bhagwat, M.J., Leishman, J.G.: Stability, consistency and convergence of time-marching free-vortex rotor wake algorithms. J. Am. Helicopter Soc. 46(1), 59–71 (2001)

    Article  Google Scholar 

  40. Roget, B.: Simulation of active twist and active flap control on a model-scale helicopter rotor. In: 24th AIAA Applied Aerodynamics Conference, San Francisco, CA, USA, June 5–8 (2006)

  41. Squire, H.B. The growth of a vortex in turbulent flow. Aeronaut. Q. 16(3), 302–206 (1965)

    Google Scholar 

  42. Park, J.S., Jung, S.N., Park, S.H., Yu, Y.H.: Correlation study of a rotor in descending flight using DYMORE with a freewake model. J. Mech. Sci. Technol. 24(8), 1583–1601 (2010)

    Article  Google Scholar 

  43. Peters, D.A., Barwey, D.: A general theory of rotorcraft trim. Math. Prob. Eng. 2(1), 1–34 (1996)

    Article  MATH  Google Scholar 

  44. Benoit, B., Dequin, A.M., Kampa, K., Grünhagen, W., Basset, P.M., Gimonet, B.: HOST, A general helicopter simulation tool for Germany and France. In: 56th Annual Forum of the American Helicopter Society, Virginia Beach, VA, May 2–4, (2000)

  45. Beaumier, P., Spiegel, P.: Validation of ONERA aeroacoustic prediction methods for blade-vortex interaction using HART test results. In: 51st Annual Forum of the American Helicopter Society, Fort Worth, TX, May 9–11, (1995)

  46. Toulmay, F.: Modèle d’étude de l’aérodynamique du rotor. (Model for Computation of Rotor Aerodynamics), Rapport Eurocopter-France no R 371.376, (1986)

  47. Michéa, M., Desopper, A., Costes, M.: Aerodynamic rotor loads prediction method with free wake for low speed descent flight. In: 18th European Rotorcraft Forum, Avignon, France, Sept 14–17, (1992)

  48. Rahier, G., Delrieux, Y.: Improvement of helicopter rotor blade-vortex interaction noise prediction using a rotor wake roll-up model. In: 16th AIAA Aeroacoustic Conference, Munich, Germany, June 12–15 (1995)

  49. Spiegel, P., Rahier, G., Michéa, B.: Blade-vortex interaction noise: prediction and comparison with flight and wind tunnel tests. In: 18th European Rotorcraft Forum, Avignon, France, Sept 14–17 (1992)

  50. Spiegel, P., Rahier, G.: Theoretical study and prediction of BVI noise including close interactions.In: AHS Technical Specialists Meeting on Rotorcraft Acoustics and Fluid Mechanics, Philadelphia, PA, USA, Oct 15–17 (1991)

  51. Spiegel, P.: An iso-event spanwise interpolation technique for blade-vortex interaction noise prediction and analysis. In: 24th European Rotorcraft Forum, Marseille, France, Sept 15–17 (1998)

  52. van der Wall, B.G.: Analytic Formulation of Unsteady Profile Aerodynamics and its Application to Simulation of Rotors. ESA-TT-1244, (1992) (Translation of the Research Report DLR-FB 90–28, 1990)

  53. von Grünhagen, W.: Bestimmung der gekoppelten Schlagbiege-, Schwenkbiege- und Torsionsschwingungen für beliebige Rotorblätter mit Hilfe der Finite-Element-Methode (Computation of the coupled flap bending, lag bending and torsion oscillations for arbitrary rotor blades with the aid of the finite element method). DFVLR IB 154–80/21 (1980)

  54. Houbold, J.C., Brooks, G.W.: Differential Equations of Motion for Combined Flapwise Bending, Chordwise Bending, and Torsion of Twisted Nonuniform Rotor Blades,” NACA TN 3905 (1957)

  55. Leiss, U.: A Consistent Mathematical Model to Simulate Steady and Unsteady Rotor-Blade Aerodynamics. In: 10th European Rotorcraft Forum, The Hague, Netherlands, Aug 28–31 (1984)

  56. Wagner, H.: Über die Entstehung des dynamischen Auftriebes von Tragflügeln (About the Development of Dynamic Lift of Wings). Zeitschrift für Angewandte Mathematik und Mechanik 5(1), 17–35 (1925)

    Article  MATH  Google Scholar 

  57. Küssner, H.G.: Zusammenfassender Bericht nber den instationären Auftrieb von Flügeln (Summary Report about the Unsteady Lift of Wings). Luftfahrt-Forschung 13(12), 410–424 (1936)

    Google Scholar 

  58. Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Addison-Wesley Publ. Comp. Inc., Reading (1957)

    Google Scholar 

  59. van der Wall, B.G., Göpel, C.: Über den Einfluss der Rotorversuchsstände ROTEST und ROTOS auf die Rotordurchströmung im DNW (About the Influence of the Rotor Test Rigs ROTEST and ROTOS on the Flow in the Rotor Disk in DNW), DLR-Mitteilung 91–16 (1991)

  60. Petot, D., Arnaud, G., Harrison, R., Stevens, J., Teves, D., van der Wall, B.G., Young, C., Széchényi E.: Stall effects and blade torsion—an evaluation of predictive tools. In: 23rd European Rotorcraft Forum, Dresden, Germany, Sept 16–18 (1997)

  61. van der Wall, B.G., Geißler, W.: Experimental and numerical investigations on steady and unsteady behaviour of a rotor airfoil with a piezoelectric trailing edge flap. In: 55th Annual Forum of the American Helicopter Society, Montreal, Canada, May 25–27 (1999)

  62. van der Wall, B.G., Yin, J.: DLR’s S4 Rotor Code Validation With HART II Data: The Baseline Case. In: 1st International Forum on Rotorcraft Multidisciplinary Technology, Seoul, Korea, Oct 15–17 (2007)

  63. Mangler, K.W., Squire, H.B.: The induced velocity field of a rotor. ARC R&M 2642, (1950)

  64. Beddoes, T.S.: A wake model for high resolution airloads. In: AHS/ARO 1st International Conference on Rotorcraft Basic Research, Research Triangle Park, NC, USA, Feb 19–21 (1985)

  65. van der Wall, B.G.: Helicopter rotor BVI airloads computation using advanced prescribed wake modeling. In: 29th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, June 27–30 (2011)

  66. van der Wall, B.G., Roth, M.: Free-wake analysis on massively parallel computers and validation with HART test data. In: 53rd Annual Forum of the American Helicopter Society, Virginia Beach, VA, USA, April 29–May 1 (1997)

  67. Yin, J., Delfs, J.: Improvement of DLR rotor aero-acoustic code (APSIM) and its validation with analytic solution. In: 29th European Rotorcraft Forum, Friedrichshafen, Germany, Sept 16–18 (2003)

  68. Yin, J., Ahmed, S.: Aerodynamics and aeroacoustics of helicopter main-rotor/tail-rotor interaction. In: 5th AIAA/CEAS Aeroacoustics Conference and Exhibit, Bellevue, WA, USA, May 10–12 (1999)

  69. Bir, G., Chopra, I.: University of Maryland Advanced Rotorcraft Code (UMARC) Manual. University of Maryland, College Park, (1995)

  70. Chopra, I., Bir, G.: University of Maryland Advanced Rotor Code: UMARC. In: American Helicopter Society Aeromechanics Specialists Conference, San Francisco, CA, USA, Jan 19–21 (1994)

  71. Hodges, D.H., Dowell, E.H.: Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades. NASA TN D-7818, (1974)

  72. Hodges, D.H., Ormiston, R.A., Peters, D.A.: On the Nonlinear Deformation Geometry of Euler–Bernoulli Beams. NASA TP 1566 (1980)

  73. Weissinger, J.: The Lift Distribution of Swept-Back Wings. NACA TM 1120 (1947)

  74. Leishman, J.G., Beddoes, T.S.: A semi-empirical model for dynamic stall. J. Am. Helicopter Soc. 34(3), 3–17 (1989)

    Google Scholar 

  75. Sitaraman, J., Baeder, J.B.: Enhanced Unsteady Airload Models Using CFD. In: AIAA Fluids 2000 Conference & Exhibit, Paper 2000-2465, Denver, CO, USA, June 19–22 (2000)

  76. Gopalan, G., Sitaraman, J., Baeder, J.D., Schmitz, F.H.: Aerodynamic and aeroacoustic prediction methodologies with application to the HART-II model rotor. In: 62nd Annual Forum of the American Helicopter Society, Phoenix, AZ, USA, May 9–11 (2006)

  77. Leishman, J.G., Bhagwat, M.J.: Free-vortex wake predictions of the vortex ring state for single-rotor and multi-rotor configurations. In: 58th Annual Forum of the American Helicopter Society, Montréal, Canada, June 11–13 (2002)

  78. Bhagwat, M.J., Leishman, J.G.: Generalized viscous vortex model for application to free-vortex wake and aeroacoustic calculations. In: 58th Annual Forum of the American Helicopter Society, Montréal, Canada, June 11–13 (2002)

  79. Datta, A.: Understanding, Prediction and Validation of Rotor Vibratory Loads in Steady Level Flight. Doctoral Dissertation, University of Maryland, USA (2004)

  80. Chen, P.C., Evans, R.A.D., Niemczuk, J.B., Ross, P.A., Baeder, J.D.: Active twist smart rotor technology for blade-vortex interaction noise reduction. Proc. SPIE 3668, 37 (1999). doi:10.1117/12.350730

  81. Bauchau, O.A., Bottasso, C.L., Nikishkov, Y.G.: Modeling rotorcraft dynamics with finite element multibody procedures. Math. Comput. Model. 33(10–11), 1113–1137 (2001)

    Article  MATH  Google Scholar 

  82. Reveles, N., Zaki, A., Smith, M.J., Bauchau, O.A.: A Kriging-Based Trim Algorithm For Rotor Aeroelasticity. In: 37th European Rotorcraft Forum, Milan, Italy, Sept 12–15 (2011)

  83. Leishman, J.G. Principles of Helicopter Aerodynamics. 2nd edn. Cambridge University Press, New York (2006)

    Google Scholar 

  84. Shannon, C.E.: Communication in the Presence of Noise. Proceedings of the IEEE 86(2), 447–457 (1998); [re-print of: Proceedings of the IRE, 37(1), 10–21(1949)]

  85. Johnson, W.: Helicopter Theory. Princeton University Press, Princeton, NY (1980) Dover Publications, New York (1994)

  86. Heyson, H.H.: Use of Superposition in Digital Computers to Obtain Wind Tunnel Interference Factors for Arbitrary Configurations, With Particular Reference to V/STOL Models. NASA TR R-302 (1969)

  87. Langer, H.-J.: An experimental evaluation of wind tunnel wall correction methods for helicopter performance. In: 52nd Annual Forum of the American Helicopter Society, Washington, DC, USA, June 4–6 (1996)

  88. Lim, J.W., Dimanlig, A.C.B.: An investigation of the fuselage effect for HART II using a CFD/CSD coupled analysis. In: 2nd International Forum on Rotorcraft Multidisciplinary Technology, Seoul, Korea, Oct 19–20 (2009)

  89. van der Wall, B.G.: Mode identification and data synthesis of HART II blade deflection data. DLR-IB 111–2007/28 (2007)

  90. van der Wall, B.G., Schneider, O.: Conditional averaging methodology for periodic data with time Jitter and spatial scatter. In: 33rd European Rotorcraft Forum, Kazan, Russia, Sept 11–13 (2007)

  91. Schneider, O., van der Wall, B.G.: Conditionally Averaging of Pressure Data from HART II. DLR IB-2006/08 (2006)

  92. Schneider, O., van der Wall, B.G.: Conditionally Averaging of Microphone Data from HART II. DLR IB-2006/37 (2006)

Download references

Acknowledgments

The authors would like to thank all of their colleagues, students, and advisors for their collaboration. These are: Dr. Jae-Sang Park (KU), Dr. Jianping Yin (DLR), Dr. Yves Delrieux (Onera), Mathieu Amiraux and Sebastian Thomas (UM), Michael Acierno, Nicolas Reveles, and C. Eric Lynch (GIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berend G. van der Wall.

Additional information

Condensed form of a paper first presented at the 68th Annual Forum of the American Helicopter Society, Ft. Worth, TX, USA, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Wall, B.G., Lim, J.W., Smith, M.J. et al. The HART II international workshop: an assessment of the state-of-the-art in comprehensive code prediction. CEAS Aeronaut J 4, 223–252 (2013). https://doi.org/10.1007/s13272-013-0077-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-013-0077-9

Keywords

Navigation