Skip to main content
Log in

Complete mitochondrial genome sequence of Cucullaea labiata (Arcoida: Cucullaeidae) and phylogenetic implications

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

The complete mitochondrial genome of Cucullaea labiata (Arcoida: Cucullaeidae) was firstly determined in this study in order to better understand the phylogenetic relationship between Cucullaeidae and Arcidae. The C. labiata mitochondrial genome was 25,845 bp in size and contained 12 protein-coding genes, 2 rRNA and 22 tRNA genes. The number and the location of the tRNA genes were different from three Arcidae species (Scapharca broughtonii, Scapharca kagoshimensis and Tegillarca granosa). Gene arrangement also differed dramatically. The length of the non-coding regions was 10,559 bp, in which the largest one (6057 bp) included eight point nine copies of a 659 bp repeat motif. The number of repeated sequences was different in different individuals, similar to the findings from the mitochondrial genome of S. broughtonii and Placopecten magellanicus. One intron was found in cox1 gene both in CL_98 and in CL_99 individuals of C. labiata. The reason why mitochondrial introns are retained so scarcely in bivalve taxa needs further research. Phylogenetic analyses based on 12 concatenated amino acid sequences of protein-coding genes supported Cucullaeidae was the sister group of Arcidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of bestfit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boore JL, Brown WM (2000) Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17:87–106

    Article  CAS  PubMed  Google Scholar 

  • Boss KJ (1982) Mollusca. In: Parker SP (ed) Synopsis and classification of living organisms, vol 1. McGraw-Hill, New York, p 1111

    Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    CAS  PubMed  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Endo K, Noguchi Y, Ueshima R, Jacobs HT (2005) Novel repetitive structures, deviant protein-encoding sequences and unidentified ORFs in the mitochondrial genome of the brachiopod Lingula anatina. J Mol Evol 61:36–53

    Article  CAS  PubMed  Google Scholar 

  • Feng YW, Li Q, Kong LF (2015) Molecular phylogeny of Arcoidea with emphasis on Arcidae species (Bivalvia: Pteriomorphia) along the coast of China: challenges to current classification of arcoids. Mol Phylogenet Evol 85:189–196

    Article  PubMed  Google Scholar 

  • Fukami H, Chen CA, Chiou CY, Knowlton N (2007) Novel group I introns encoding a putative homing endonuclease in the mitochondrial cox1 gene of scleractinian corals. J Mol Evol 64:591–600

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 95–98

  • Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  • Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  PubMed  Google Scholar 

  • Lang BF, Laforest MJ, Burger G (2007) Mitochondrial introns: a critical view. Trends Genet 23:119–125

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Park C, Kijima A (2002) Isolation and characterization of microsatellite loci in the Pacific abalone, Haliotis discus hannai. J Shellfish Res 21:811–815

    Google Scholar 

  • Liu YG, Kurokawa T, Sekino M, Tanabe T, Watanabe K (2013) Complete mitochondrial DNA sequence of the ark shell Scapharca broughtonii: an ultra-large metazoan mitochondrial genome. Comp Biochem Physiol D 8:72–81

    Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M (2003) Phylogenetic analysis of the subclass Pteriomorphia (Bivalvia) from mtDNA COI sequences. Mol Phylogenet Evol 27:429–440

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Zhao N, Shen X, Hao J, Liang M, Zhu X, Cheng HL, Yan BL, Liu Z (2012) Complete mitochondrial genome of Coelomactra antiquata (Mollusca: Bivalvia): the first representative from the family Mactridae with novel gene order and unusual tandem repeats. Comp Biochem Physiol D 7:175–179

    CAS  Google Scholar 

  • Oliver PG, Holmes AM (2006) The Arcoidea (Mollusca: Bivalvia): a review of the current phenetic-based systematics. Zool J Linn Soc 148:237–251

    Article  Google Scholar 

  • Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis D, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, pp 205–247

    Google Scholar 

  • Plazzi F, Ceregato A, Taviani M, Passamonti M (2011) A molecular phylogeny of bivalve mollusks: ancient radiations and divergences as revealed by mitochondrial genes. PLoS ONE 6:e27147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pons JL, Labesse G (2009) @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes. Nucleic Acids Res 37:W485–W491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    Article  CAS  PubMed  Google Scholar 

  • Sharma PP, González VL, Kawauchi GY, Andrade SCS, Guzmán A, Collins TM, Glover EA, Harper EM, Healy JM, Mikkelsen PM et al (2012) Phylogenetic analysis of four nuclear protein-encoding genes largely corroborates the traditional classification of Bivalvia (Mollusca). Mol Phylogenet Evol 65:64–74

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Snyder M (2007) Complete mitochondrial DNA sequence of the scallop Placopecten magellanicus: evidence of transposition leading to an uncharacteristically large mitochondrial genome. J Mol Evol 65:380–391

    Article  CAS  PubMed  Google Scholar 

  • Snyder M, Fraser AR, LaRoche J, Gartner-Kepkay KE, Zouros E (1987) A typical mitochondrial DNA from the deep-sea scallop Placopecten magellanicus. Proc Natl Acad Sci USA 84:7595–7599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner G, Hammer S (2000) Molecular phylogeny of the Bivalvia inferred from 18 S rDNA sequences with particular reference to the Pteriomorphia. Geol Soc Lond Spec Publ 177:11–29

    Article  Google Scholar 

  • Sun SE, Kong LF, Yu H, Li Q (2014) The complete mitochondrial genome of Scapharca kagoshimensis (Bivalvia: Arcidae). Mitochondrial DNA 1–2

  • Sun SE, Kong LF, Yu H, Li Q (2015) The complete mitochondrial DNA of Tegillarca granosa and comparative mitogenomic analyses of three Arcidae species. Gene 557:61–70

    Article  CAS  PubMed  Google Scholar 

  • Waller TR (1998) Origin of the molluscan class Bivalvia and a phylogeny of major groups. Bivalves 1(4):5

    Google Scholar 

  • Wang X, Lavrov DV (2008) Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae. PLoS ONE 3:e2723

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  CAS  PubMed  Google Scholar 

  • Wu XY, Xu XD, Yu ZN, Wei ZP, Xia JJ (2010) Comparison of seven Crassostrea mitogenomes and phylogenetic analyses. Mol Phylogenet Evol 57:448–454

    Article  CAS  PubMed  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  CAS  PubMed  Google Scholar 

  • Xu KF, Kanno M, Yu H, Li Q, Kijima A (2011) Complete mitochondrial DNA sequence and phylogenetic analysis of Zhikong scallop Chlamys farreri (Bivalvia: Pectinidae). Mol Biol Rep 38:3067–3074

    Article  CAS  PubMed  Google Scholar 

  • Yamanoue Y, Miya M, Matsuura K, Yagishita N, Mabuchi K, Sakai H (2007) Phylogenetic position of tetraodontiform fishes within the higher teleosts: Bayesian inferences based on 44 whole mitochondrial genome sequences. Mol Phylogenet Evol 45:89–101

    Article  CAS  PubMed  Google Scholar 

  • Yu ZN, Wei ZP, Kong XY, Shi W (2008) Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis—a case of tandem duplication-random loss for genome rearrangement in Crassostrea? BMC Genomics 9:477

    Article  Google Scholar 

  • Yuan Y, Li Q, Yu H, Kong LF (2012) The complete mitochondrial genomes of six heterodont bivalves (Tellinoidea and Solenoidea): variable gene arrangements and phylogenetic implications. PLoS ONE 7:e32353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature—recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the National Natural Science Foundation of China (41276138), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Ethics declarations

Conflict of interest

Yanwei Feng declares that he/she has no conflict of interest. Qi Li declares that he/she has no conflict of interest. Hong Yu declares that he/she has no conflict of interest. Lingfeng Kong declares that he/she has no conflict of interest.

Ethical approval

The research was conducted in the absence of any ethical issue on aquatic animal research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Li, Q., Yu, H. et al. Complete mitochondrial genome sequence of Cucullaea labiata (Arcoida: Cucullaeidae) and phylogenetic implications. Genes Genom 39, 867–875 (2017). https://doi.org/10.1007/s13258-017-0548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-017-0548-1

Keywords

Navigation