Skip to main content
Log in

Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Several clinical studies have identified a strong correlation between neointimal hyperplasia following coronary stent deployment and both stent-induced arterial injury and altered vessel hemodynamics. As such, the sequential structural and fluid dynamics analysis of balloon-expandable stent deployment should provide a comprehensive indication of stent performance. Despite this observation, very few numerical studies of balloon-expandable coronary stents have considered both the mechanical and hemodynamic impact of stent deployment. Furthermore, in the few studies that have considered both phenomena, only a small number of stents have been considered. In this study, a sequential structural and fluid dynamics analysis methodology was employed to compare both the mechanical and hemodynamic impact of six balloon-expandable coronary stents. To investigate the relationship between stent design and performance, several common stent design properties were then identified and the dependence between these properties and both the mechanical and hemodynamic variables of interest was evaluated using statistical measures of correlation. Following the completion of the numerical analyses, stent strut thickness was identified as the only common design property that demonstrated a strong dependence with either the mean equivalent stress predicted in the artery wall or the mean relative residence time predicted on the luminal surface of the artery. These results corroborate the findings of the large-scale ISAR-STEREO clinical studies and highlight the crucial role of strut thickness in coronary stent design. The sequential structural and fluid dynamics analysis methodology and the multivariable statistical treatment of the results described in this study should prove useful in the design of future balloon-expandable coronary stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Auricchio, F., M. Di Loreto, and E. Sacco. Finite-element analysis of a stenotic artery revascularization through a stent insertion. Comput. Methods Biomech. Biomed. Eng. 4:249–263, 2001. doi:10.1080/10255840108908007.

    Article  Google Scholar 

  2. Balossino, R., F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stented arteries. J. Biomech. 41:1053–1061, 2008. doi:10.1016/j.jbiomech.2007.12.005.

    Article  Google Scholar 

  3. Banerjee, R., S. Devarakonda, and D. Rajamohan. Developed pulsatile flow in a deployed coronary stent. Biorheology 44:91–102, 2007.

    Google Scholar 

  4. Bedoya, J., C. A. Meyer, L. H. Timmins, M. R. Moreno, and J. E. Moore. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006. doi:10.1115/1.2246236.

    Article  Google Scholar 

  5. Capelli, C., F. Gervaso, L. Petrini, G. Dubini, and F. Migliavacca. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31:441–447, 2009. doi:10.1016/j.medengphy.2008.11.002.

    Article  Google Scholar 

  6. Carlier, S. G., L. C. A. van Damme, C. P. Blommerde, J. J. Wentzel, G. van Langehove, S. Verheye, et al. Augmentation of wall shear stress inhibits neointimal hyperplasia after stent implantation: inhibition through reduction of inflammation? Circulation 107:2741–2746, 2003. doi:10.1161/01.CIR.0000066914.95878.6D.

    Article  Google Scholar 

  7. Carter, A. J., J. R. Laird, A. Farb, W. Kufs, D. C. Wortham, and R. Virmani. Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model. J. Am. Coll. Cardiol. 24:1398–1405, 1994.

    Article  Google Scholar 

  8. Chen, H. Y., J. Hermiller, A. K. Sinha, M. Sturek, L. Zhu, and G. S. Kassab. Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis. J. Appl. Physiol. 106:1686–1691, 2009. doi:10.1152/japplphysiol.91519.2008.

    Article  Google Scholar 

  9. Chen, H. Y., I. D. Moussa, C. Davidson, and G. S. Kassab. Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion. J. R. Soc. Interface 9:1187–1193, 2012. doi:10.1098/rsif.2011.0675.

    Article  Google Scholar 

  10. Chiastra, C., F. Migliavacca, M. Á. Martínez, and M. Malvè. On the necessity of modelling fluid-structure interaction for stented coronary arteries. J. Mech. Behav. Biomed. Mater. 34:217–230, 2014. doi:10.1016/j.jmbbm.2014.02.009.

    Article  Google Scholar 

  11. Chiastra, C., S. Morlacchi, D. Gallo, U. Morbiducci, R. Cárdenes, I. Larrabide, et al. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J. R. Soc. Interface 10:20130193, 2013. doi:10.1098/rsif.2013.0193.

    Article  Google Scholar 

  12. Chiastra, C., S. Morlacchi, S. Pereira, G. Dubini, and F. Migliavacca. Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur. J. Mech. B 35:76–84, 2012. doi:10.1016/j.euromechflu.2012.01.011.

    Article  Google Scholar 

  13. Colombo, A., G. Stankovic, and J. W. Moses. Selection of coronary stents. J. Am. Coll. Cardiol. 40:1021–1033, 2002. doi:10.1016/S0735-1097(02)02123-X.

    Article  Google Scholar 

  14. Conway, C., F. Sharif, J. P. McGarry, and P. E. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:374–387, 2012. doi:10.1007/s13239-012-0104-8.

    Article  Google Scholar 

  15. David Chua, S. N., B. W. MacDonald, and M. S. J. Hashmi. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. J. Mater. Process. Technol. 155–156:1772–1779, 2004. doi:10.1016/j.jmatprotec.2004.04.396.

    Article  Google Scholar 

  16. De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41:383–389, 2008. doi:10.1016/j.jbiomech.2007.08.014.

    Article  Google Scholar 

  17. Dehlaghi, V., S. Najarian, and M. T. Shadpour. Effect of stent geometry on phase shift between pressure and flow waveforms in stented human coronary artery. Am. J. Appl. Sci. 5:340–346, 2008. doi:10.3844/ajassp.2008.340.346.

    Article  Google Scholar 

  18. Duraiswamy, N., R. T. Schoephoerster, and J. E. Moore. Comparison of near-wall hemodynamic parameters in stented artery models. J. Biomech. Eng. 131:061006, 2009. doi:10.1115/1.3118764.

    Article  Google Scholar 

  19. Early, M., and D. J. Kelly. The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries. Proc. Inst. Mech. Eng. H 224:465–476, 2010.

    Article  Google Scholar 

  20. Ellwein, L. M., H. Otake, T. J. Gundert, B.-K. Koo, T. Shinke, Y. Honda, et al. Optical coherence tomography for patient-specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery. Cardiovasc Eng Technol 2:212–227, 2011. doi:10.1007/s13239-011-0047-5.

    Article  Google Scholar 

  21. Faik, I., R. Mongrain, R. L. Leask, J. Rodes-Cabau, E. Larose, and O. Bertrand. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery. Biomed. Mater. 2:S28–S37, 2007. doi:10.1088/1748-6041/2/1/S05.

    Article  Google Scholar 

  22. Farb, A., G. Sangiorgi, A. J. Carter, V. M. Walley, W. D. Edwards, R. S. Schwartz, et al. Pathology of acute and chronic coronary stenting in humans. Circulation 99:44–52, 1999.

    Article  Google Scholar 

  23. Farb, A., D. K. Weber, F. D. Kolodgie, A. P. Burke, and R. Virmani. Morphological predictors of restenosis after coronary stenting in humans. Circulation 105:2974–2980, 2002.

    Article  Google Scholar 

  24. Fujise, K., P. Yhip, H. Anderson, G. Schroth, O. Rosales, and R. Smalling. Balloon to artery ratio, not inflation pressure, correlates with adequate stent deployment: size is more important than pressure. J. Interv. Cardiol. 13:223–229, 2000. doi:10.1111/j.1540-8183.2000.tb00296.x.

    Article  Google Scholar 

  25. Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9:551–561, 2010. doi:10.1007/s10237-010-0196-8.

    Article  Google Scholar 

  26. Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41:1206–1212, 2008. doi:10.1016/j.jbiomech.2008.01.027.

    Article  Google Scholar 

  27. Gijsen, F. J. H., F. Migliavacca, S. Schievano, L. Socci, L. Petrini, A. Thury, et al. Simulation of stent deployment in a realistic human coronary artery. Biomed. Eng. 7:23, 2008. doi:10.1186/1475-925X-7-23.

    Google Scholar 

  28. Gu, L., S. Zhao, and S. Froemming. Arterial wall mechanics and clinical implications after coronary stenting: comparisons of three stent designs. Int. J. Appl. Mech. 04:1250013, 2012. doi:10.1142/S1758825112500135.

    Article  Google Scholar 

  29. Gu, L., S. Zhao, A. K. Muttyam, and J. M. Hammel. The relation between the arterial stress and restenosis rate after coronary stenting. J. Med. Dev. 4:031005, 2010. doi:10.1115/1.4002238.

    Article  Google Scholar 

  30. Gundert, T. J., R. J. Dholakia, D. McMahon, and J. F. LaDisa. Computational fluid dynamics evaluation of equivalency in hemodynamic alterations between implanted into an idealized coronary artery. J. Med. Device 7:011004, 2013. doi:10.1115/1.4023413.

    Article  Google Scholar 

  31. Gundert, T. J., A. L. Marsden, W. Yang, and J. F. LaDisa. Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng. 134:011002, 2012. doi:10.1115/1.4005542.

    Article  Google Scholar 

  32. Gunn, J., N. Arnold, K. H. Chan, L. Shepherd, D. C. Cumberland, and D. C. Crossman. Coronary artery stretch versus deep injury in the development of in-stent neointima. Heart 88:401–405, 2002.

    Article  Google Scholar 

  33. He, Y., N. Duraiswamy, A. O. Frank, and J. E. Moore. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J. Biomech. Eng. 127:637–647, 2005.

    Article  Google Scholar 

  34. Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X.-M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004. doi:10.1152/ajpheart.00897.2003.

    Article  Google Scholar 

  35. Hoffmann, R., G. S. Mintz, R. Mehran, K. M. Kent, A. D. Pichard, L. F. Satler, et al. Tissue proliferation within and surrounding Palmaz-Schatz stents is dependent on the aggressiveness of stent implantation technique. Am. J. Cardiol. 83:1170–1174, 1999.

    Article  Google Scholar 

  36. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005. doi:10.1152/ajpheart.00934.2004.

    Article  Google Scholar 

  37. Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.

    Article  Google Scholar 

  38. Hsiao, H.-M., Y.-H. Chiu, K.-H. Lee, and C.-H. Lin. Computational modeling of effects of intravascular stent design on key mechanical and hemodynamic behavior. Comput. Des. 44:757–765, 2012. doi:10.1016/j.cad.2012.03.009.

    Google Scholar 

  39. Jung, H., J. Choi, and C. Park. Asymmetric flows of non-Newtonian fluis in symmetric stenosed artery. Korea Aust. Rheol. J. 16:101–108, 2004.

    Google Scholar 

  40. Kastrati, A., J. Mehilli, J. Dirschinger, F. Dotzer, H. Schühlen, F. J. Neumann, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103:2816–2821, 2001.

    Article  Google Scholar 

  41. Kastrati, A., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schühlen, et al. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.

    Article  Google Scholar 

  42. Katritsis, D. G., A. Theodorakakos, I. Pantos, M. Gavaises, N. Karcanias, and E. P. Efstathopoulos. Flow patterns at stented coronary bifurcations: computational fluid dynamics analysis. Circ. Cardiovasc. Interv. 5:530–539, 2012. doi:10.1161/CIRCINTERVENTIONS.112.968347.

    Article  Google Scholar 

  43. Keller, B. K., C. M. Amatruda, D. R. Hose, J. Gunn, P. V. Lawford, G. Dubini, et al. Contribution of mechanical and fluid stresses to the magnitude of in-stent restenosis at the Level of individual stent struts. Cardiovasc. Eng. Technol. 5:164–175, 2014. doi:10.1007/s13239-014-0181-y.

    Article  Google Scholar 

  44. Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35:1857–1869, 2007. doi:10.1007/s10439-007-9357-z.

    Article  Google Scholar 

  45. Kiousis, D. E., A. R. Wulff, and G. A. Holzapfel. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann. Biomed. Eng. 37:315–330, 2009. doi:10.1007/s10439-008-9606-9.

    Article  Google Scholar 

  46. Kornowski, R., M. K. Hong, F. O. Tio, O. Bramwell, H. Wu, and M. B. Leon. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J. Am. Coll. Cardiol. 31:224–230, 1998.

    Article  Google Scholar 

  47. LaDisa, J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, et al. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31:972–980, 2003.

    Article  Google Scholar 

  48. LaDisa, J. F., L. E. Olson, H. A. Douglas, D. C. Warltier, J. R. Kersten, and P. S. Pagel. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling. Biomed. Eng. 5:40, 2006. doi:10.1186/1475-925X-5-40.

    Google Scholar 

  49. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, et al. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004. doi:10.1152/japplphysiol.01329.2003.

    Article  Google Scholar 

  50. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, et al. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J. Appl. Physiol. 98:947–957, 2005. doi:10.1152/japplphysiol.00872.2004.

    Article  Google Scholar 

  51. LaDisa, J. F., L. E. Olson, D. A. Hettrick, D. C. Warltier, J. R. Kersten, and P. S. Pagel. Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening. Biomed. Eng. 4:59, 2005. doi:10.1186/1475-925X-4-59.

    Google Scholar 

  52. LaDisa, J. F., L. E. Olson, R. C. Molthen, D. A. Hettrick, P. F. Pratt, M. D. Hardel, et al. Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am. J. Physiol. Heart Circ. Physiol. 288:H2465–H2475, 2005. doi:10.1152/ajpheart.01107.2004.

    Article  Google Scholar 

  53. Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38:1574–1581, 2005. doi:10.1016/j.jbiomech.2004.07.022.

    Article  Google Scholar 

  54. Liang, D. K., D. Z. Yang, M. Qi, and W. Q. Wang. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int. J. Cardiol. 104:314–318, 2005. doi:10.1016/j.ijcard.2004.12.033.

    Article  Google Scholar 

  55. Martin, D. Sequential structural and fluid dynamics analysis of balloon-expandable coronary stents. Dublin: Dublin Institute of Technology, 2013.

    Google Scholar 

  56. Martin, D. M., and F. J. Boyle. Drug-eluting stents for coronary artery disease: a review. Med. Eng. Phys. 33:148–163, 2011. doi:10.1016/j.medengphy.2010.10.009.

    Article  Google Scholar 

  57. Martin, D., and F. Boyle. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration. Int. J. Numer. Method Biomed. Eng. 29:1161–1175, 2013. doi:10.1002/cnm.2557.

    Article  Google Scholar 

  58. Martin, D. M., E. A. Murphy, and F. J. Boyle. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Med. Eng. Phys. 36:1047–1056, 2014. doi:10.1016/j.medengphy.2014.05.011.

    Article  Google Scholar 

  59. Migliavacca, F., L. Petrini, P. Massarotti, S. Schievano, F. Auricchio, and G. Dubini. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2:205–217, 2004. doi:10.1007/s10237-004-0039-6.

    Article  Google Scholar 

  60. Morlacchi, S., C. Chiastra, E. Cutrì, P. Zunino, F. Burzotta, L. Formaggia, et al. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and Tryton-based culotte to treat bifurcations: a virtual simulation study. EuroIntervention 9:1441–1453, 2014. doi:10.4244/EIJV9I12A242.

    Article  Google Scholar 

  61. Morlacchi, S., C. Chiastra, D. Gastaldi, G. Pennati, G. Dubini, and F. Migliavacca. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. J. Biomech. Eng. 133:121010, 2011. doi:10.1115/1.4005476.

    Article  Google Scholar 

  62. Morlacchi, S., S. G. Colleoni, R. Cárdenes, C. Chiastra, J. L. Diez, I. Larrabide, et al. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35:1272–1281, 2013. doi:10.1016/j.medengphy.2013.01.007.

    Article  Google Scholar 

  63. Mortier, P., M. De Beule, D. Van Loo, B. Verhegghe, and P. Verdonck. Finite element analysis of side branch access during bifurcation stenting. Med. Eng. Phys. 31:434–440, 2009. doi:10.1016/j.medengphy.2008.11.013.

    Article  Google Scholar 

  64. Mortier, P., G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38:88–99, 2010. doi:10.1007/s10439-009-9836-5.

    Article  Google Scholar 

  65. Murphy, J. B., and F. J. Boyle. A numerical methodology to fully elucidate the altered wall shear stress in a stented coronary artery. Cardiovasc. Eng. Technol. 1:256–268, 2010. doi:10.1007/s13239-010-0028-0.

    Article  Google Scholar 

  66. Murphy, J. B., and F. J. Boyle. A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery. Biorheology 47:117–132, 2010. doi:10.3233/BIR-2010-0568.

    Google Scholar 

  67. Murphy, B. P., P. Savage, P. E. McHugh, and D. F. Quinn. The stress–strain behavior of coronary stent struts is size dependent. Ann. Biomed. Eng. 31:686–691, 2003.

    Article  Google Scholar 

  68. Pache, J., A. Kastrati, J. Mehilli, H. Schühlen, F. Dotzer, J. Hausleiter, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J. Am. Coll. Cardiol. 41:1283–1288, 2003. doi:10.1016/S0735-1097(03)00119-0.

    Article  Google Scholar 

  69. Pant, S., N. W. Bressloff, A. I. J. Forrester, and N. Curzen. The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann. Biomed. Eng. 38:1893–1907, 2010. doi:10.1007/s10439-010-9962-0.

    Article  Google Scholar 

  70. Pant, S., G. Limbert, N. P. Curzen, and N. W. Bressloff. Multiobjective design optimisation of coronary stents. Biomaterials 32:7755–7773, 2011. doi:10.1016/j.biomaterials.2011.07.059.

    Article  Google Scholar 

  71. Papafaklis, M. I., C. V. Bourantas, P. E. Theodorakis, C. S. Katsouras, K. K. Naka, D. I. Fotiadis, et al. The effect of shear stress on neointimal response following sirolimus- and paclitaxel-eluting stent implantation compared with bare-metal stents in humans. JACC Cardiovasc. Interv. 3:1181–1189, 2010. doi:10.1016/j.jcin.2010.08.018.

    Article  Google Scholar 

  72. Pericevic, I., C. Lally, D. Toner, and D. J. Kelly. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31:428–433, 2009. doi:10.1016/j.medengphy.2008.11.005.

    Article  Google Scholar 

  73. Ragkousis, G. E., N. Curzen, and N. W. Bressloff. Simulation of longitudinal stent deformation in a patient-specific coronary artery. Med. Eng. Phys. 36:467–476, 2014. doi:10.1016/j.medengphy.2014.02.004.

    Article  Google Scholar 

  74. Rajamohan, D., R. K. Banerjee, L. H. Back, A. A. Ibrahim, and M. A. Jog. Developing pulsatile flow in a deployed coronary stent. J. Biomech. Eng. 128:347–359, 2006. doi:10.1115/1.2194067.

    Article  Google Scholar 

  75. Rikhtegar, F., F. Pacheco, C. Wyss, K. S. Stok, H. Ge, R. J. Choo, et al. Compound ex vivo and in silico method for hemodynamic analysis of stented arteries. PLoS One 8:e58147, 2013. doi:10.1371/journal.pone.0058147.

    Article  Google Scholar 

  76. Rikhtegar, F., C. Wyss, K. S. Stok, D. Poulikakos, R. Müller, and V. Kurtcuoglu. Hemodynamics in coronary arteries with overlapping stents. J. Biomech. 47:505–511, 2014. doi:10.1016/j.jbiomech.2013.10.048.

    Article  Google Scholar 

  77. Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.

    Article  Google Scholar 

  78. Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 84:378–383, 1999.

    Article  Google Scholar 

  79. Sanmartín, M., J. Goicolea, C. García, J. García, A. Crespo, J. Rodríguez, et al. Influence of shear stress on in-stent restenosis: in vivo study using 3D reconstruction and computational fluid dynamics. Rev. Esp. Cardiol. 59:20–27, 2006.

    Article  Google Scholar 

  80. Schiavone, A., L. G. Zhao, and A. A. Abdel-Wahab. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery-finite element simulation. Mater. Sci. Eng. C 42:479–488, 2014. doi:10.1016/j.msec.2014.05.057.

    Article  Google Scholar 

  81. Schulz, C., R. A. Herrmann, C. Beilharz, J. Pasquantonio, and E. Alt. Coronary stent symmetry and vascular injury determine experimental restenosis. Heart 83:462–467, 2000.

    Article  Google Scholar 

  82. Schwartz, R. S., K. C. Huber, J. G. Murphy, W. D. Edwards, A. R. Camrud, R. E. Vlietstra, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J. Am. Coll. Cardiol. 19:267–274, 1992.

    Article  Google Scholar 

  83. Seo, T., L. G. Schachter, and A. I. Barakat. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann. Biomed. Eng. 33:444–456, 2005.

    Article  Google Scholar 

  84. Serruys, P., and B. Rensing. Handbook of coronary stents. Kentucky: Taylor & Francis, 2001.

    Google Scholar 

  85. Takashima, K., T. Kitou, K. Mori, and K. Ikeuchi. Simulation and experimental observation of contact conditions between stents and artery models. Med. Eng. Phys. 29:326–335, 2007. doi:10.1016/j.medengphy.2006.04.003.

    Article  Google Scholar 

  86. Timmins, L. H., M. W. Miller, F. J. Clubb, and J. E. Moore. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Invest. 91:955–967, 2011. doi:10.1038/labinvest.2011.57.

    Article  Google Scholar 

  87. Timmins, L. H., M. R. Moreno, C. A. Meyer, J. C. Criscione, A. Rachev, and J. E. Moore. Stented artery biomechanics and device design optimization. Med. Biol. Eng. Comput. 45:505–513, 2007. doi:10.1007/s11517-007-0180-3.

    Article  Google Scholar 

  88. Wentzel, J. J., R. Krams, J. C. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van Der Giessen, et al. Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    Article  Google Scholar 

  89. Williams, A. R., B.-K. Koo, T. J. Gundert, P. J. Fitzgerald, and J. F. LaDisa. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J. Appl. Physiol. 109:532–540, 2010. doi:10.1152/japplphysiol.00086.2010.

    Article  Google Scholar 

  90. Wu, W., W.-Q. Wang, D.-Z. Yang, and M. Qi. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40:2580–2585, 2007. doi:10.1016/j.jbiomech.2006.11.009.

    Article  Google Scholar 

  91. Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy. J. Biomech. 43:2126–2132, 2010. doi:10.1016/j.jbiomech.2010.03.050.

    Article  Google Scholar 

  92. Zahedmanesh, H., and C. Lally. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med. Biol. Eng. Comput. 47:385–393, 2009. doi:10.1007/s11517-009-0432-5.

    Article  Google Scholar 

  93. Zunino, P., C. D’Angelo, L. Petrini, C. Vergara, C. Capelli, and F. Migliavacca. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput. Methods Appl. Mech. Eng. 198:3633–3644, 2009. doi:10.1016/j.cma.2008.07.019.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was funded by Dublin Institute of Technology under the Fiosraigh scholarship programme. The authors would also like to acknowledge the SFI/HEA Irish Centre of High-End Computing for the provision of computational facilities and support.

Conflict of interest

David Martin and Fergal Boyle declare that they have no conflict of interest.

Statement of Human Studies

No human studies were carried out by the authors for this article.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Martin.

Additional information

Associate Editor James E. Moore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, D., Boyle, F. Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis. Cardiovasc Eng Tech 6, 314–328 (2015). https://doi.org/10.1007/s13239-015-0219-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0219-9

Keywords

Navigation