Skip to main content
Log in

Hemodynamics of Stent Implantation Procedures in Coronary Bifurcations: An In Vitro Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stent implantation in coronary bifurcations presents unique challenges and currently there is no universally accepted stent deployment approach. Despite clinical and computational studies, the effect of each stent implantation method on the coronary artery hemodynamics is not well understood. In this study the hemodynamics of stented coronary bifurcations under pulsatile flow conditions were investigated experimentally. Three implantation methods, provisional side branch (PSB), culotte (CUL), and crush (CRU), were investigated using time-resolved particle image velocimetry to measure the velocity fields. Subsequently, hemodynamic parameters including wall shear stress, oscillatory shear index (OSI), and relative residence time (RRT) were calculated. The pressure field through the vessel was non-invasively quantified and pressure wave speeds were computed. The effects of each stented case were evaluated and compared against an un-stented case. CRU provided the lowest compliance mismatch, but demonstrated detrimental stent interactions. PSB, the clinically preferred method, and CUL maintained many normal flow conditions. However, PSB provided about a 300% increase in both OSI and RRT. CUL yielded a 10 and 85% increase in OSI and RRT, respectively. The results of this study support the concept that different bifurcation stenting techniques result in hemodynamic environments that deviate from that of un-stented bifurcations, to varying degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure. 8

Similar content being viewed by others

References

  1. Antoniadis, A. P., A. A. Giannopoulos, J. J. Wentzel, M. Joner, G. D. Giannoglou, R. Virmani, and Y. S. Chatzizisis. Impact of local flow haemodynamics on atherosclerosis in coronary artery bifurcations. EuroIntervention 11:V18–V22, 2015.

    Article  PubMed  Google Scholar 

  2. Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37:1310–1321, 2009.

    Article  PubMed  Google Scholar 

  3. Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro comparison of the effect of stent configuration on wall shear stress using time-resolved particle image velocimetry. Ann. Biomed. Eng. 38:889–902, 2010.

    Article  PubMed  Google Scholar 

  4. Charonko, J. J., C. V. King, B. L. Smith, and P. P. Vlachos. Assessment of pressure field calculations from particle image velocimetry measurements. Meas. Sci. Technol. 21:105401, 2010.

    Article  Google Scholar 

  5. Charonko, J. J., R. Kumar, K. Stewart, W. C. Little, and P. P. Vlachos. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann. Biomed. Eng. 41:1049–1061, 2013.

    Article  PubMed  Google Scholar 

  6. Charonko, J. J., S. A. Ragab, and P. P. Vlachos. A scaling parameter for predicting pressure wave reflection in stented arteries. J. Med. Device 3:011006, 2009.

    Article  Google Scholar 

  7. Charonko, J. J., and P. P. Vlachos. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas. Sci. Technol. 24:065301, 2013.

    Article  CAS  Google Scholar 

  8. Chiastra, C., S. Morlacchi, S. Pereira, G. Dubini, and F. Migliavacca. Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur. J. Mech. 35:76–84, 2012.

    Article  Google Scholar 

  9. Darremont, O., J. L. Leymarie, T. Lefevre, R. Albiero, P. Mortier, and Y. Louvard. Technical aspects of the provisional side branch stenting strategy. EuroIntervention 11:V86–V90, 2015.

    Article  PubMed  Google Scholar 

  10. Davies, J. E., Z. I. Whinnett, D. P. Francis, K. Willson, R. A. Foale, I. S. Malik, A. D. Hughes, K. H. Parker, and J. Mayet. Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am. J. Physiol. Heart Circ. Physiol. 290:H878–H885, 2006.

    Article  CAS  PubMed  Google Scholar 

  11. Dzavik, V., R. Kharbanda, J. Ivanov, D. J. Ing, S. Bui, K. Mackie, R. Ramsamujh, A. Barolet, L. Schwartz, and P. H. Seidelin. Predictors of long-term outcome after crush stenting of coronary bifurcation lesions: importance of the bifurcation angle. Am. Heart J. 152:762–769, 2006.

    Article  PubMed  Google Scholar 

  12. Eckstein, A. C., J. Charonko, and P. Vlachos. Phase correlation processing for DPIV measurements. Exp. Fluids 45:485–500, 2008.

    Article  Google Scholar 

  13. Eckstein, A., and P. P. Vlachos. Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV). Meas. Sci. Technol. 20:075402, 2009.

    Article  Google Scholar 

  14. Eckstein, A., and P. P. Vlachos. Digital particle image velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 20:055401, 2009.

    Article  Google Scholar 

  15. Hain, R., and C. J. Kähler. Fundamentals of multiframe particle image velocimetry (PIV). Exp. Fluids 42:575–587, 2007.

    Article  Google Scholar 

  16. Hildick-Smith, D., A. J. de Belder, N. Cooter, N. P. Curzen, T. C. Clayton, K. G. Oldroyd, L. Bennett, S. Holmberg, J. M. Cotton, P. E. Glennon, M. R. Thomas, P. A. Maccarthy, A. Baumbach, N. T. Mulvihill, R. A. Henderson, S. R. Redwood, I. R. Starkey, and R. H. Stables. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: the British Bifurcation Coronary Study: old, new, and evolving strategies. Circulation 121:1235–1243, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Hoi, Y., Y. Q. Zhou, X. Zhang, R. M. Henkelman, and D. A. Steinman. Correlation between local hemodynamics and lesion distribution in a novel aortic regurgitation murine model of atherosclerosis. Ann. Biomed. Eng. 39:1414–1422, 2011.

    Article  PubMed  Google Scholar 

  18. Karri, S., J. Charonko, and P. P. Vlachos. Robust wall gradient estimation using radial basis functions and proper orthogonal decomposition (POD) for particle image velocimetry (PIV) measured fields. Meas. Sci. Technol. 20:045401, 2009.

    Article  Google Scholar 

  19. Kervinen, K., M. Niemelä, H. Romppanen, A. Erglis, I. Kumsars, M. Maeng, N. R. Holm, J. F. Lassen, P. Gunnes, S. Stavnes, J. S. Jensen, A. Galløe, I. Narbute, D. Sondore, E. H. Christiansen, J. Ravkilde, T. K. Steigen, J. Mannsverk, P. Thayssen, K. N. Hansen, S. Helqvist, S. Vikman, R. Wiseth, J. Aarøe, J. Jokelainen, and L. Thuesen. Clinical outcome after crush versus culotte stenting of coronary artery bifurcation lesions: the nordic stent technique study 36-month follow-up results. JACC Cardiovasc. Interv. 6:1160–1165, 2013.

    Article  PubMed  Google Scholar 

  20. LaDisa, J. F., L. E. Olson, R. C. Molthen, D. A. Hettrick, P. F. Pratt, M. D. Hardel, J. R. Kersten, D. C. Warltier, and P. S. Pagel. Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am. J. Physiol. Heart Circ. Physiol. 288:H2465–H2475, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Lassen, J. F., N. R. Holm, G. Stankovic, T. Lefevre, A. Chieffo, D. Hildick-Smith, M. Pan, O. Darremont, R. Albiero, M. Ferenc, and Y. Louvard. Percutaneous coronary intervention for coronary bifurcation disease: consensus from the first 10 years of the European Bifurcation Club meetings. EuroIntervention 10:545–560, 2014.

    Article  PubMed  Google Scholar 

  22. Morlacchi, S., C. Chiastra, D. Gastaldi, G. Pennati, G. Dubini, and F. Migliavacca. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. J. Biomech. Eng. 133:121010, 2011.

    Article  PubMed  Google Scholar 

  23. Morlacchi, S., S. G. Colleoni, R. Cárdenes, C. Chiastra, J. L. Diez, I. Larrabide, and F. Migliavacca. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35:1272–1281, 2013.

    Article  PubMed  Google Scholar 

  24. Ozolanta, I., G. Tetere, B. Purinya, and V. Kasyanov. Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex. Med. Eng. Phys. 20:523–533, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Raben, J. S., P. Hariharan, R. Robinson, R. Malinauskas, and P. P. Vlachos. Time-resolved particle image velocimetry measurements with wall shear stress and uncertainty quantification for the FDA Nozzle Model. Cardiovasc. Eng. Technol. 7:7–22, 2015.

    Article  PubMed  Google Scholar 

  26. Raben, J. S., S. Morlacchi, F. Burzotta, F. Migliavacca, and P. P. Vlachos. Local blood flow patterns in stented coronary bifurcations: an experimental and numerical study. J. Appl. Biomater. Funct. Mater. 13:116–126, 2014.

    Google Scholar 

  27. Segers, P., A. Swillens, L. Taelman, and J. Vierendeels. Wave reflection leads to over- and underestimation of local wave speed by the PU- and QA-loop methods: theoretical basis and solution to the problem. Physiol. Meas. 35:847–861, 2014.

    Article  PubMed  Google Scholar 

  28. Sklansky, J. Image Segmentation and Feature Extraction. IEEE Trans. Syst. Man Cybern. 8:237–247, 1978.

    Article  Google Scholar 

  29. Van Der Heiden, K., F. J. H. Gijsen, A. Narracott, S. Hsiao, I. Halliday, J. Gunn, J. J. Wentzel, and P. C. Evans. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc. Res. 99:269–275, 2013.

    Article  PubMed  Google Scholar 

  30. Yamashita, T., T. Nishida, M. G. Adamian, C. Briguori, M. Vaghetti, N. Corvaja, R. Albiero, L. Finci, C. Di Mario, J. M. Tobis, and A. Colombo. Bifurcation lesions : two stents versus one stent—immediate and follow-up results. J. Am. Coll. Cardiol. 35:1145–1151, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Yazdani, S. K., J. E. Moore, J. L. Berry, and P. P. Vlachos. DPIV measurements of flow disturbances in stented artery models: adverse affects of compliance mismatch. J. Biomech. Eng. 126:559–566, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jaime S. Raben for her contributions to the initial efforts of this project. Pavlos Vlachos acknowledges partial support by NIH NHLBI Grant No HL106276-01A1. Claudio Chiastra is partially supported by the ERC starting grant (310457, BioCCora).

Conflict of Interest

Authors Melissa C. Brindise, Claudio Chiastra, Francesco Burzotta, Francesco Migliavacca, and Pavlos P. Vlachos have no conflicts of interest to report.

Human and Animal Rights

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos P. Vlachos.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brindise, M.C., Chiastra, C., Burzotta, F. et al. Hemodynamics of Stent Implantation Procedures in Coronary Bifurcations: An In Vitro Study. Ann Biomed Eng 45, 542–553 (2017). https://doi.org/10.1007/s10439-016-1699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1699-y

Keywords

Navigation