Skip to main content
Log in

Optical Coherence Tomography for Patient-specific 3D Artery Reconstruction and Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Image-based computational models for quantifying hemodynamic indices in stented coronary arteries often employ biplane angiography and intravascular ultrasound for 3D reconstruction. Recent advances in guidewire simulation algorithms and the rise of optical coherence tomography (OCT) suggest more precise coronary artery reconstruction may be possible. We developed a patient-specific method that combines the superior resolution of OCT with techniques for imaging wire pathway reconstruction adopted from graph theory. The wire pathway with minimum bending energy was determined by applying a shortest path algorithm to a graph representation of the artery based on prior studies indicating a wire adopts the straightest configuration within a tortuous vessel. Segments from OCT images are then registered orthogonal to the wire pathway using rotational orientation consistent with geometry delineated by computed tomography (CT). To demonstrate applicability, OCT segments within the stented region were combined with proximal and distal CT segments and imported into computational fluid dynamics software to quantify indices of wall shear stress (WSS). The method was applied to imaging data of a left circumflex artery with thrombus acquired immediately post-stenting and after a 6-month follow-up period. Areas of stent-induced low WSS returned to physiological levels at follow-up, but correlated with measurable neointimal thickness in OCT images. Neointimal thickness was negligible in areas of elevated WSS due to thrombus. This novel methodology capable of reconstructing a stented coronary artery may ultimately enhance our knowledge of deleterious hemodynamic indices induced by stenting after further investigation in a larger patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Alderliesten, T., P. A. N. Bosman, and W. J. Niessen. Towards a real-time minimally-invasive vascular intervention simulation system. IEEE Trans. Med. Imaging 26(1):128–132, 2007.

    Article  Google Scholar 

  2. Andreini, D., G. Pontone, S. Mushtaq, M. Pepi, and A. L. Bartorelli. Multidetector computed tomography coronary angiography for the assessment of coronary in-stent restenosis. Am. J. Cardiol. 105(5):645–655, 2010. doi:10.1016/j.amjcard.2009.10.046.

    Article  Google Scholar 

  3. Antiga, L., and D. A. Steinman. Robust and objective decomposition and mapping of bifurcating vessels. IEEE Trans. Med. Imaging 23(6):704–713, 2004.

    Article  Google Scholar 

  4. Arftsen, G. Mathematical Methods for Physicists. San Diego, CA: Academic, 1985.

    Google Scholar 

  5. Barlis, P., and J. M. Schmitt. Current and future developments in intracoronary optical coherence tomography imaging. EuroIntervention 4(4):529–533, 2009.

    Article  Google Scholar 

  6. Braunwald, E., D. P. Zipes, and P. Libby. Heart Disease: A Textbook of Cardiovascular Medicine (6th ed.). W.B. Saunders, 2001.

  7. De Santis, G., P. Mortier, M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med. Biol. Eng. Comput. 48(4):371–380, 2010. doi:10.1007/s11517-010-0583-4.

    Article  Google Scholar 

  8. Dijkstra, J., G. Koning, and J. Reiber. Quantitative measurements in IVUS images. Int. J. Cardiac Imaging 15:513–522, 1999.

    Article  Google Scholar 

  9. Evans, J. L., K. H. Ng, S. G. Wiet, M. J. Vonesh, W. B. Burns, M. G. Radvany, et al. Accurate three-dimensional reconstruction of intravascular ultrasound data. Spatially correct three-dimensional reconstructions. Circulation 93(3):567–576, 1996.

    Google Scholar 

  10. Finn, A. V., G. Nakazawa, M. Joner, F. D. Kolodgie, E. K. Mont, H. K. Gold, et al. Vascular responses to drug eluting stents: importance of delayed healing. Arterioscler. Thromb. Vasc. Biol. 27(7):1500–1510, 2007.

    Article  Google Scholar 

  11. Gijsen, F. J., F. Migliavacca, S. Schievano, L. Socci, L. Petrini, A. Thury, et al. Simulation of stent deployment in a realistic human coronary artery. Biomed. Eng. Online 7:23, 2008. doi:10.1186/1475-925x-7-23.

    Article  Google Scholar 

  12. Gijsen, F. J., R. M. Oortman, J. J. Wentzel, J. C. Schuurbiers, K. Tanabe, M. Degertekin, et al. Usefulness of shear stress pattern in predicting neointima distribution in sirolimus-eluting stents in coronary arteries. Am. J. Cardiol. 92(11):1325–1328, 2003.

    Article  Google Scholar 

  13. Gilbert, J., J. Raboud, and B. Zinman. Meta-analysis of the effect of diabetes on restenosis rates among patients receiving coronary angioplasty stenting. Diabetes Care 27(4):990–994, 2004.

    Article  Google Scholar 

  14. Goubergrits, L., E. Wellnhofer, U. Kertzscher, K. Affeld, C. Petz, and H. C. Hege. Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography. Ann. Biomed. Eng. 37(4):682–691, 2009. doi:10.1007/s10439-009-9656-7.

    Article  Google Scholar 

  15. Gow, B. S., D. Schonfeld, and D. J. Patel. The dynamic elastic properties of the canine left circumflex coronary artery. J. Biomech. 7(5):389–395, 1974. doi:10.1016/0021-9290(74)90001-3.

    Article  Google Scholar 

  16. Gundert, T. J., S. C. Shadden, A. R. Williams, B. K. Koo, J. A. Feinstein, and J. F. Ladisa. A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models. Ann. Biomed. Eng. 2011. doi:10.1007/s10439-010-0238-5.

  17. Hamuro, M., J. C. Palmaz, E. A. Sprague, C. Fuss, and J. Luo. Influence of stent edge angle on endothelialization in an in vitro model. J. Vasc. Interv. Radiol. 12(5):607–611, 2001.

    Article  Google Scholar 

  18. He, Y., N. Duraiswamy, A. O. Frank, and J. E. Moore. Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J. Biomech. Eng. 127(4):637–647, 2005.

    Article  Google Scholar 

  19. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.

    Google Scholar 

  20. Holmes, Jr., D. R., D. J. Kereiakes, S. Garg, P. W. Serruys, G. J. Dehmer, S. G. Ellis, et al. Stent thrombosis. J. Am. Coll. Cardiol. 56(17):1357–1365, 2010. doi:10.1016/j.jacc.2010.07.016.

    Article  Google Scholar 

  21. Iakovou, I., T. Schmidt, E. Bonizzoni, L. Ge, G. M. Sangiorgi, G. Stankovic, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293(17):2126–2130, 2005.

    Article  Google Scholar 

  22. Imola, F., M. T. Mallus, V. Ramazzotti, A. Manzoli, A. Pappalardo, A. Di Giorgio, et al. Safety and feasibility of frequency domain optical coherence tomography to guide decision making in percutaneous coronary intervention. EuroIntervention 6(5):575–581, 2010. doi:EIJV6I5A97[pii]10.4244/EIJV6I5A97.

    Article  Google Scholar 

  23. Joner, M., G. Nakazawa, A. V. Finn, S. C. Quee, L. Coleman, E. Acampado, et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J. Am. Coll. Cardiol. 52(5):333–342, 2008. doi:10.1016/j.jacc.2008.04.030.

    Article  Google Scholar 

  24. Kern, M. Biplane coronary angiography: an old dog with new tricks. Cath. Lab. Digest. 2009.

  25. Konings, M. K., E. B. van de Kraats, T. Alderliesten, and W. J. Niessen. Analytical guide wire motion algorithm for simulation of endovascular interventions. Med. Biol. Eng. Comput. 41(6):689–700, 2003.

    Article  Google Scholar 

  26. Kotani, J., M. Awata, S. Nanto, M. Uematsu, F. Oshima, H. Minamiguchi, et al. Incomplete neointimal coverage of sirolimus-eluting stents: angioscopic findings. J. Am. Coll. Cardiol. 47(10):2108–2111, 2006.

    Article  Google Scholar 

  27. Krams, R., J. J. Wentzel, J. A. F. Oomen, R. Vinke, J. C. H. Schuurbiers, P. J. de Feyter, et al. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo : combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler. Thromb. Vasc. Biol. 17(10):2061–2065, 1997.

    Article  Google Scholar 

  28. Kuchulakanti, P. K., W. W. Chu, R. Torguson, P. Ohlmann, S. W. Rha, L. C. Clavijo, et al. Correlates and long-term outcomes of angiographically proven stent thrombosis with sirolimus- and paclitaxel-eluting stents. Circulation 113(8):1108–1113, 2006.

    Article  Google Scholar 

  29. Laban, M., J. A. Oomen, C. J. Slager, J. J. Wentzel, R. Krams, J. C. H. Schuurbiers, et al., editors. ANGUS: a new approach to three-dimensional reconstruction of coronary vessels by combined use of angiography and intravascular ultrasound. Computers in Cardiology, 10–13 Sep. 1995.

  30. LaDisa, Jr., J. F., M. Bowers, L. Harmann, R. Prost, A. V. Doppalapudi, T. Mohyuddin, et al. Time-efficient patient-specific quantification of regional carotid artery fluid dynamics and spatial correlation with plaque burden. Med. Phys. 37(2):784–792, 2010.

    Article  Google Scholar 

  31. LaDisa, Jr., J. F., I. Guler, L. E. Olson, D. A. Hettrick, J. R. Kersten, D. C. Warltier, et al. Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann. Biomed. Eng. 31(8):972–980, 2003.

    Article  Google Scholar 

  32. LaDisa, Jr., J. F., D. A. Hettrick, L. E. Olson, I. Guler, E. R. Gross, T. T. Kress, et al. Stent implantation alters coronary artery hemodynamics and wall shear stress during maximal vasodilation. J. Appl. Physiol. 93(6):1939–1946, 2002. doi:10.1152/japplphysiol.00544.2002.

    Google Scholar 

  33. LaDisa, Jr., J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, et al. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 97:424–430, 2004.

    Article  Google Scholar 

  34. LaDisa, Jr., J. F., L. E. Olson, I. Guler, D. A. Hettrick, J. R. Kersten, D. C. Warltier, et al. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated using time-dependent 3D computational fluid dynamics models. J. Appl. Physiol. 98(3):947–957, 2005.

    Article  Google Scholar 

  35. LaDisa, Jr., J. F., L. E. Olson, R. C. Molthen, D. A. Hettrick, P. F. Pratt, M. D. Hardel, et al. Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am. J. Physiol. Heart Circ. Physiol. 288(5):H2465–H2475, 2005.

    Article  Google Scholar 

  36. Leaman, D., R. Brower, G. Meester, P. Serruys, and M. van den Brand. Coronary artery atherosclerosis: severity of the disease, severity of angina pectoris and compromised left ventricular function. Circulation 63(2):285–299, 1981.

    Article  Google Scholar 

  37. Lee, S. W., and D. A. Steinman. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. J. Biomech. Eng. 129(2):273–278, 2007. doi:10.1115/1.2540836.

    Article  Google Scholar 

  38. Lloyd-Jones, D., R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, et al. Heart disease and stroke statistics-2010 update: a report from the American Heart Association. Circulation 121(7):e46–e215, 2010. doi:10.1161/circulationaha.109.192667.

    Article  Google Scholar 

  39. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042, 1999.

    Article  Google Scholar 

  40. Marquering, H., J. Dijkstra, Q. Besnehard, J. Duth’e, J. Schuijf, J. Bax et al., editors. Coronary CT angiography: IVUS image fusion for quantitative plaque and stenosis analyses. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2008.

  41. Moses, J. W., M. B. Leon, J. J. Popma, P. J. Fitzgerald, D. R. Holmes, C. O’Shaughnessy, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349(14):1315–1323, 2003.

    Article  Google Scholar 

  42. Muller, J., O. Sahni, X. Li, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Anisotropic adaptive finite element method for modelling blood flow. Comput. Meth. Biomech. Biomed. Eng. 8(5):295–305, 2005. doi:10.1080/10255840500264742.

    Article  Google Scholar 

  43. Murata, A., D. Wallace-Bradley, A. Tellez, C. Alviar, M. Aboodi, A. Sheehy, et al. Accuracy of optical coherence tomography in the evaluation of neointimal coverage after stent implantation. JACC Cardiovasc. Imaging 3(1):76–84, 2010. doi:S1936-878X(09)00757-8[pii]10.1016/j.jcmg.2009.09.018.

    Article  Google Scholar 

  44. Myers, J. G., J. A. Moore, M. Ojha, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng. 29:109–120, 2001.

    Article  Google Scholar 

  45. Nissen, S. E., and P. Yock. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 103(4):604–616, 2001.

    Google Scholar 

  46. Otake, H., J. Shite, J. Ako, T. Shinke, Y. Tanino, D. Ogasawara, et al. Local determinants of thrombus formation following sirolimus-eluting stent implantation assessed by optical coherence tomography. J. Am. Coll. Cardiol. Intv. 2(5):459–466, 2009. doi:10.1016/j.jcin.2009.03.003.

    Google Scholar 

  47. Papafaklis, M. I., C. V. Bourantas, P. E. Theodorakis, C. S. Katsouras, K. K. Naka, D. I. Fotiadis, et al. The effect of shear stress on neointimal response following sirolimus- and paclitaxel-eluting stent implantation compared with bare-metal stents in humans. J. Am. Coll. Cardiol. Intv. 3(11):1181–1189, 2010. doi:10.1016/j.jcin.2010.08.018.

    Google Scholar 

  48. Prause, G. P., S. C. DeJong, C. R. McKay, and M. Sonka. Towards a geometrically correct 3-D reconstruction of tortuous coronary arteries based on biplane angiography and intravascular ultrasound. Int. J. Cardiac Imaging 13(6):451–462, 1997.

    Article  Google Scholar 

  49. Prause, G. P. M., S. C. DeJong, C. R. McKay, and M. Sonka, editors. Geometrically correct 3-D reconstruction of coronary wall and plaque: combining biplane angiography and intravascular ultrasound. Computers in Cardiology, 8–11 Sep. 1996.

  50. Redwood, S., N. Curzen, and M. Thomas. Oxford Textbook of Interventional Cardiology. Oxford: Oxford University Press, 2010.

  51. Sahni, O., J. Müller, K. E. Jansen, M. S. Shephard, and C. A. Taylor. Efficient anisotropic adaptive discretization of the cardiovascular system. Comput. Meth. Appl. Mech. Eng. 195(41–43):5634–5655, 2006. doi:10.1016/j.cma.2005.10.018.

    Article  MATH  Google Scholar 

  52. Schafer, S., K. R. Hoffmann, P. B. Noel, C. N. Ionita, and J. Dmochowski. Evaluation of guidewire path reproducibility. Med. Phys. 35(5):1884–1892, 2008.

    Article  Google Scholar 

  53. Schafer, S., V. Singh, P. B. Noel, A. M. Walczak, J. Xu, and K. R. Hoffmann. Real-time endovascular guidewire position simulation using shortest path algorithms. Int. J. Comput. Assist. Radiol. Surg. 4(6):597–608, 2009. doi:10.1007/s11548-009-0385-z.

    Article  Google Scholar 

  54. Sheth, T., J. D. Dodd, U. Hoffmann, S. Abbara, A. Finn, H. K. Gold, et al. Coronary stent assessability by 64 slice multi-detector computed tomography. Catheter. Cardiovasc. Interv. 69(7):933–938, 2007. doi:10.1002/ccd.21130.

    Article  Google Scholar 

  55. Slager, C. J., J. J. Wentzel, J. C. H. Schuurbiers, J. A. F. Oomen, J. Kloet, R. Krams, et al. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102(5):511–516, 2000.

    Google Scholar 

  56. Stergiopulos, N., J. J. Meister, and N. Westerhof. Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method. Ann. Biomed. Eng. 22(4):392–397, 1994.

    Article  Google Scholar 

  57. Stergiopulos, N., P. Segers, and N. Westerhof. Use of pulse pressure method for estimating total arterial compliance in vivo. Am. J. Physiol. Heart Circ. Physiol. 276(2 Pt 2):H424–H428, 1999.

    Google Scholar 

  58. Subramanian, K. R., M. J. Thubrikar, B. Fowler, M. T. Mostafavi, and M. W. Funk. Accurate 3D reconstruction of complex blood vessel geometries from intravascular ultrasound images: in vitro study. J. Med. Eng. Technol. 24(4):131–140, 2000.

    Article  Google Scholar 

  59. Takarada, S., T. Imanishi, Y. Liu, H. Ikejima, H. Tsujioka, A. Kuroi, et al. Advantage of next-generation frequency-domain optical coherence tomography compared with conventional time-domain system in the assessment of coronary lesion. Catheter. Cardiovasc. Interv. 75(2):202–206, 2010. doi:10.1002/ccd.22273.

    Article  Google Scholar 

  60. Tang, B. T., C. P. Cheng, M. T. Draney, N. M. Wilson, P. S. Tsao, R. J. Herfkens, et al. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am. J. Physiol. Heart Circ. Physiol. 291(2):H668–H676, 2006.

    Article  Google Scholar 

  61. Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California. Ann. Biomed. Eng. 38(3):1188–1203, 2010. doi:10.1007/s10439-010-9901-0..

    Article  Google Scholar 

  62. Van Huis, G. A., P. Sipkema, and N. Westerhof. Coronary input impedance during cardiac cycle as determined by impulse response method. Am. J. Physiol. 253(2 Pt 2):H317–H324, 1987.

    Google Scholar 

  63. Vignon-Clementel, I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195:3776–3796, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  64. Wahle, A., G. P. M. Prause, C. Von Birgelen, R. Erbel, and M. Sonka. Fusion of angiography and intravascular ultrasound in vivo: establishing the absolute 3-D frame orientation. IEEE Trans. Biomed. Eng. 46(10):1176–1180, 1999.

    Article  Google Scholar 

  65. Wentzel, J. J., F. J. Gijsen, J. C. Schuurbiers, A. F. van der Steen, and P. W. Serruys. The influence of shear stress on in-stent restenosis and thrombosis. EuroIntervention 4(Suppl C):C27–C32, 2008.

    Google Scholar 

  66. Wentzel, J. J., F. J. H. Gijsen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodeling and neointimal formation. J. Biomech. 36(5):681–688, 2003. doi:10.1016/s0021-9290(02)00446-3.

    Article  Google Scholar 

  67. Wentzel, J. J., R. Krams, J. C. H. Schuurbiers, J. A. Oomen, J. Kloet, W. J. van der Giessen, et al. Relationship between neointimal thickness and shear stress after wallstent implantation in human coronary arteries. Circulation 103:1740–1745, 2001.

    Google Scholar 

  68. Westerhof, N., N. Stergiopulos, and M. I. M. Noble. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education. New York: Springer, 2005.

    Google Scholar 

  69. Williams, A. R., B.-K. Koo, T. J. Gundert, P. J. Fitzgerald, and J. LaDisa, Jr. Local hemodynamic changes caused by main branch stent implantation and virtual side branch balloon angioplasty in a representative coronary bifurcation. J. Appl. Physiol. 109:532–540, 2010. doi:10.1152/japplphysiol.00086.2010.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by a Translational Opportunity Grant of the Pilot and Collaborative Clinical and Translational Research Grants program from the Clinical and Translational Science Institute of Southeastern Wisconsin (to JFL) and a Junior Faculty Award from the American Diabetes Association (to JFL). Computational support for this work was made possible by NSF grants CTS-0521602 and OCI-0923037 and assistance from Dr. Daniel Rowe, Marquette University. Dr. Bon-Kwon Koo is the recipient of a research grant from the CardioVascular Research Foundation (CVRF), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Ellwein.

Additional information

Associate Editor Stephen B. Knisley oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellwein, L.M., Otake, H., Gundert, T.J. et al. Optical Coherence Tomography for Patient-specific 3D Artery Reconstruction and Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery. Cardiovasc Eng Tech 2, 212–227 (2011). https://doi.org/10.1007/s13239-011-0047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0047-5

Keywords

Navigation