Skip to main content
Log in

Reactive blending of polylactic acid/polyethylene glycol toward biodegradable film

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polyethylene glycol (PEG) was first modified with bis(trimethoxysilylpropyl) amine as an effective coupling agent. Different compositions of PEG and polylactic acid (PLA) were then prepared through melt blending. The silane modification of PEG was confirmed by infrared spectroscopy. The SEM micrographs of different PEG/PLA compositions showed rather homogenous single phase morphology in the compositions with silane-modified PEG. The efficacy of silane-modified PEG maybe due to interfacial compatibilization of PLA and the silane-modified PEG. According to TGA and DSC thermograms, the PEG loading into PLA resulted in somewhat higher thermal stability and increase in the degree of crystallinity of up to 52%. The dynamic mechanical thermal analysis showed lower glass transition temperatures and higher toughness for all the silane-modified PEG/PLA compositions than that of the neat PLA. The biodegradation behavior of silane-modified PEG/PLA compositions increased linearly as evidenced by material weight loss either in water absorption or fungi associated destruction tests.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Chandra, R. Rustgi, Biodegradable polymers. Prog. Polym. Sci. 23, 1273–1335 (1998)

    Article  CAS  Google Scholar 

  2. J.J. Grodzinski, Biomedical application of functional polymers. React. Func. Polym. 39, 99–138 (1999)

    Article  Google Scholar 

  3. S.S. Ray, M. Okamoto, Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol. Rapid Commun. 24, 815–840 (2003)

    Article  CAS  Google Scholar 

  4. I. Pillin, N. Montrelary, Y. Grohens, Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor. Polymer 47, 4676–4682 (2006)

    Article  CAS  Google Scholar 

  5. A. Zhu, P. Lu, H. Wu, Immobilization of poly(ɛ-caprolactone)–poly(ethylene oxide)–poly(ɛ-caprolactone) triblock copolymer on poly(lactide-co-glycolide) surface and dual biofunctional effects. Appl. Surf. Sci. 253, 3247–3253 (2007)

    Article  CAS  Google Scholar 

  6. A. Lucke, J. Tebmar, E. Schnell, G. Schmeer, Biodegradable poly (D, L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Biomaterials 21, 2361–2370 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. T. Kasuga, Y. Ota, M. Nogami, Y. Abe, Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials 22, 19–23 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. R. Gang, F. Si-Shen, Preparation and characterization of poly (lactic acid)-poly (ethylene glycol) microspheres for controlled release of microspheres. Biomaterials 24, 5037 (2003)

    Article  Google Scholar 

  9. K. Bechtold, M.A. Hillmyer, W.B. Tolman, Perfectly alternating copolymer of lactic acid and ethylene oxide as a plasticizing agent for polylactide. Macromolecules 34, 8641–8648 (2001)

    Article  CAS  Google Scholar 

  10. L. Gan, A. Geng, L. Jin, Q. Zhong, L. Wang, L. Xu, C. Mei, Antibacterial nanocomposite based on carbon nanotubes–silver nanoparticles-co-doped polylactic acid. Polym. Bull. 77, 793–804 (2020)

    Article  CAS  Google Scholar 

  11. H. Liu, J. Zhang, Research progress in toughening modification of poly(lactic acid). J. Polym. Sci. Part B: Polym. Phys. (2011). https://doi.org/10.1002/polb.22283

    Article  Google Scholar 

  12. Z.Y. Zhong, J. Zhang, Z.H. Gan, X.B. Jing, A novel rare earth coordination catalyst for polymerization of biodegradable aliphatic lactones and lactides. Polym. Int. 45, 60–66 (1998)

    Article  Google Scholar 

  13. T.M. Quynh, H. Mitomo, L. Zhao, M. Tamada, Properties of a poly(L -lactic acid)/poly(D -lactic acid) stereocomplex and the stereocomplex crosslinked with triallyl isocyanurate by irradiation. J. Appl. Polym. Sci. 110, 2358–2365 (2009)

    Article  Google Scholar 

  14. J.C.H. Lai, M.R. Rahman, S. Hamdan, Comparative studies of thermo-mechanical and morphological properties of polylactic acid/fumed silica/clay (1.28E) and polylactic acid/fumed silica/clay (1.34TCN) nanocomposites. Polym. Bull. 75, 135–147 (2018)

    Article  CAS  Google Scholar 

  15. R. Li, Y. Wu, Zh. Bai, J. Guo, X. Chen, Effect of molecular weight of polyethylene glycol on crystallization behaviors, thermal properties and tensile performance of polylactic acid stereocomplexes. RSC Adv. 10, 42120–42127 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Khosravi, A. Fereidoon, M.M. Khorasani, M.R. Saeb, Experimental and theoretical mechanical behavior of compatibilized polylactic acid/polyolefin elastomer blends for potential packaging applications, Iran. Polym. J. 31, 651–663 (2022)

    CAS  Google Scholar 

  17. K.M. Choi, S.W. Lim, M.C. Choi, D.H. Han, C.S. Ha, Properties of poly(ethylene glycol)-grafted poly(lactic acid) plasticized with poly(ethylene glycol). Macromol. Res. 22, 1312–1319 (2014)

    Article  CAS  Google Scholar 

  18. E. Piorkowska, Z. Kulinski, A. Galeski, R. Masirek, Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47, 7178–7188 (2006)

    Article  CAS  Google Scholar 

  19. S. Yan, J. Yin, Y. Yang, Z. Dai, J. Ma, X. Chen, Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48, 1688–1694 (2007)

    Article  CAS  Google Scholar 

  20. B. Wang, T. Wan, W. Zeng, Dynamic rheology and morphology of polylactide/organic montmorillonite nanocomposites. J. Appli. Polym. Sci. 121, 1032–1039 (2011)

    Article  CAS  Google Scholar 

  21. A. Bhatia, R.K. Gupta, S.N. Bhattacharya, H.J. Choi, An investigation of melt rheology and thermal stability of poly(lactic acid)/ poly(butylene succinate) nanocomposites. J. Appli. Polym. Sci. 114, 2837–2847 (2009)

    Article  CAS  Google Scholar 

  22. K. Sungsanit, N. Kao, S.N. Bhattacharya, Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym. Eng. Sci. 52, 108–116 (2012)

    Article  CAS  Google Scholar 

  23. Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 44, 5681–5689 (2003)

    Article  CAS  Google Scholar 

  24. Z. Gui, Y. Xu, Y. Gao, C. Lu, S. Cheng, Novel polyethylene glycol-based polyester-toughened polylactide. Mater. Lett. 71, 63–65 (2012)

    Article  CAS  Google Scholar 

  25. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, E. Wintermantel, Thermal and mechanical properties of plasticized poly(L-lactic acid). J. Appli. Polym. Sci. 90, 1731–1738 (2003)

    Article  CAS  Google Scholar 

  26. D. Li, Y. Jiang, Sh. Lv, X. Liu, J. Gu, Q. Chen, Y. Zhang, Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS One 13(3), e0193520 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  27. B.W. Chieng, N.A. Ibrahim, W.M.Z.W. Yunus, M.Z. Hussein, Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): mechanical, thermal, and morphology properties. J. Appl. Polym. Sci. 130, 4576–4580 (2013)

    CAS  Google Scholar 

  28. E. Ozdemir, J. Hacaloglu, Characterizations of PLA-PEG blends involving organically modified montmorillonite. J. Anal. Appl. Pyrolysis 127, 343–349 (2017)

    Article  CAS  Google Scholar 

  29. W.B. Kusumaningrum, F.A. Syamani, L. Suryanegara, Heat properties of polylactic acid biocomposites after addition of plasticizers and oil palm frond microfiber. J. Kimia Sains dan Aplikasi 23(8), 295–304 (2020)

    Article  CAS  Google Scholar 

  30. S. Wasti, E. Triggs, R. Farag, M. Auad, S. Adhikari, D. Bajwa, M. Li, A.J. Ragauskas, Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing. Composites Part B Eng. 205, 108483 (2017)

    Article  Google Scholar 

  31. I.-G. Athanasoulia, P.A. Tarantili, Preparation and characterization of polyethylene glycol/poly(L-lactic acid) blends. Pure Appl. Chem. 89(1), 141–152 (2017)

    Article  CAS  Google Scholar 

  32. S. Momeni, G.E. Rezvani, M. Shakiba, S. Shafiei-Navid, M. Abdouss, A. Bigham, F. Khosravi, Z. Ahmadi, M. Faraji, H. Abdouss, S. Ramakrishna, The effect of poly (ethylene glycol) emulation on the degradation of PLA/starch composites. Polymers 13, 1019 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S. Rodríguez-Llamazares, B.L. Rivas, M. Pérez, F. Perrin-Sarazin, Poly(ethylene glycol) as a compatibilizer and plasticizer of poly(lactic acid)/clay nanocomposites. High Perform. Polym. 24(4), 254–261 (2012)

    Article  Google Scholar 

  34. M.-C. Choi, Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) via in situ reactive blending. Euro. Polym. J. 49(8), 2356 (2014)

    Article  Google Scholar 

  35. F. Hassouna, J.-M. Raquez, F. Addiego, P. Dubois, V. Toniazzo, D. Ruch, New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Euro. Polym. J. 47(11), 2134–2144 (2011)

    Article  CAS  Google Scholar 

  36. X. Meng, N.A. Nguyen, H. Tekinalp, E. Lara-Curzio, S. Ozcan, Super tough PLA-silane nano hybrids by in situ condensation and grafting. ACS Sustain Chem. Eng. 6(1), 1289–1298 (2018)

    Article  CAS  Google Scholar 

  37. M. Jakić, N.S. Vrandecic, M. Erceg, Thermal degradation of poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: Thermogravimetric and kinetic analysis. Euro. Polym. J. 81, 376–438 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salimi.

Ethics declarations

Conflict of interest

The authors declare that the research leading to these results received funding from Iran Polymer and Petrochemical Institute under grant agreement No 35794115.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, A., Ahmadi, S., Faramarzi, M. et al. Reactive blending of polylactic acid/polyethylene glycol toward biodegradable film. Macromol. Res. 31, 873–881 (2023). https://doi.org/10.1007/s13233-023-00174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00174-1

Keywords

Navigation