Skip to main content
Log in

Antibacterial nanocomposite based on carbon nanotubes–silver nanoparticles-co-doped polylactic acid

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study, carbon nanotubes (CNTs)–silver nanoparticles (AgNPs)-co-doped polylactic acid (PLA) nanocomposites were prepared through two-solvent-assisted method. The morphology and structure of the prepared nanocomposites were characterized, and the thermal, mechanical and antibacterial properties of the nanocomposites were tested afterward. The results indicated that the CNTs and AgNPs were well dispersed within the PLA matrix, in which the CNTs and AgNPs attached with each other. The incorporation of these two reinforcement fillers significantly enhanced the thermal stability of the PLA. Due to strong intermolecular interactions, the CNTs and AgNPs improved the tensile strength of the PLA. Additionally, the prepared nanocomposites showed promising antibacterial effect on staphylococcus haemolyticus due to the existence of AgNPs. Having improved thermal and mechanical properties, as well as antibacterial capability, the prepared PLA nanocomposites have the application potential in packaging areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355

    Article  CAS  Google Scholar 

  2. Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B, Jhon MS, Lee N-E (2011) Nanocomposite nanofibers of poly (D, L-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos A Appl Sci Manuf 42:1978

    Article  Google Scholar 

  3. Yin Y, Zhao L, Jiang X, Wang H, Gao W (2018) Cellulose nanocrystals modified with a triazine derivative and their reinforcement of poly (lactic acid)-based bionanocomposites. Cellulose 25:2965

    Article  CAS  Google Scholar 

  4. Mao D, Li Q, Li D, Chen Y, Chen X, Xu X (2018) Fabrication of 3D porous poly (lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering. Mater Des 142:1

    Article  CAS  Google Scholar 

  5. Tham CY, Chow WS (2018) Hydroxyapatite coated poly (lactic acid) microparticles with copper ion doping prepared via the Pickering emulsion route. Colloid Polym Sci 296:1491

    Article  CAS  Google Scholar 

  6. Wei XF, Bao RY, Cao ZQ, Zhang LQ, Liu ZY, Yang W, Xie BH, Yang MB (2014) Greatly accelerated crystallization of poly (lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid Polym Sci 292:163

    Article  CAS  Google Scholar 

  7. Liu L, Zachariah MR, Stoliarov SI, Li J (2015) Enhanced thermal decomposition kinetics of poly (lactic acid) sacrificial polymer catalyzed by metal oxide nanoparticles. RSC Adv 5:101745

    Article  CAS  Google Scholar 

  8. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486

    Article  CAS  Google Scholar 

  9. Shang SM, Gan L, Yuen MCW, Jiang SX, Luo NM (2014) Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Compos A Appl Sci Manuf 66:135

    Article  CAS  Google Scholar 

  10. Rodrigues BVM, Razzino CA, de Carvalho Oliveira F, Marciano FR, Lobo AO (2017) On the design and properties of scaffolds based on vertically aligned carbon nanotubes transferred onto electrospun poly (lactic acid) fibers. Mater Des 127:183

    Article  CAS  Google Scholar 

  11. Mai F, Habibi Y, Raquez J-M, Dubois P, Feller J-F, Peijs T, Bilotti E (2013) Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54:6818

    Article  CAS  Google Scholar 

  12. Wang L, Qiu J, Sakai E, Wei X (2016) The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Compos A Appl Sci Manuf 89:18

    Article  CAS  Google Scholar 

  13. Calamak S, Aksoy EA, Ertas N, Erdogdu C, Sagıroglu M, Ulubayram K (2015) Ag/silk fibroin nanofibers: effect of fibroin morphology on Ag+ release and antibacterial activity. Eur Polym J 67:99

    Article  CAS  Google Scholar 

  14. Fouda MMG, El-Aassar MR, El Fawal GF, Hafez EE, Masry SHD, Abdel-Megeed A (2015) k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application. Int J Biol Macromol 74:179

    Article  CAS  Google Scholar 

  15. Hebeish A, El-Naggar ME, Fouda MMG, Ramadan MA, Al-Deyab SS, El-Rafie MH (2011) Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydr Polym 86:936

    Article  CAS  Google Scholar 

  16. Yin X, Wen Y, Li Y, Liu P, Li Z, Shi Y, Lan J, Guo R, Tan L (2018) Facile fabrication of sandwich structural membrane with a hydrogel nanofibrous mat as inner layer for wound dressing application. Front Chem 6:490

    Article  CAS  Google Scholar 

  17. Dahlous KA, Abd-Elkader OH, Fouda MMG, Al Othman Z, El-Faham A (2019) Eco-friendly method for silver nanoparticles immobilized decorated silica: synthesis and characterization and preliminary antibacterial activity. J Taiwan Inst Chem Eng 95:324

    Article  CAS  Google Scholar 

  18. Aziz A, Lim HN, Girei SH, Yaacob MH, Mahdi MA, Huang NM, Pandikumar A (2015) Silver/graphene nanocomposite-modified optical fiber sensor platform for ethanol detection in water medium. Sens Actuators B Chem 206:119

    Article  Google Scholar 

  19. Wang M, Pramoda KP, Goh SH (2006) Enhancement of interfacial adhesion and dynamic mechanical properties of poly (methyl methacrylate)/multiwalled carbon nanotube composites with amine-terminated poly (ethylene oxide). Carbon 44:613

    Article  CAS  Google Scholar 

  20. Chen X, Kalish J, Hsu SL (2011) Structure evolution of α′‐phase poly (lactic acid). J Polym Sci Part B Polym Phys 49:1446

    Article  CAS  Google Scholar 

  21. Gan L, Shang SM, Yuen CWM, Jiang SX, Luo NM (2015) Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos B Eng 69:237

    Article  CAS  Google Scholar 

  22. Banerjee S, Kahn MGC, Wong SS (2003) Rational chemical strategies for carbon nanotube functionalization. Chem A Eur J 9:1899

    Article  Google Scholar 

  23. Shang SM, Gan L, Yuen CWM, Jiang SX, Luo NM (2015) The synthesis of graphene nanoribbon and its reinforcing effect on poly (vinyl alcohol). Compos A Appl Sci Manuf 68:149

    Article  CAS  Google Scholar 

  24. Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly (lactic acid)s. Polymer 39:267

    Article  CAS  Google Scholar 

  25. Geng AB, Meng L, Han JQ, Zhong Q, Li MR, Han SG, Mei CT, Xu LJ, Tan L, Gan L (2018) Highly efficient visible-light photocatalyst based on cellulose derived carbon nanofiber/BiOBr composites. Cellulose 25:4133

    Article  CAS  Google Scholar 

  26. Gan L, Geng A, Xu L, Chen M, Wang L, Liu J, Han S, Mei C, Zhong Q (2018) The fabrication of bio-renewable and recyclable cellulose based carbon microspheres incorporated by CoFe2O4 and the photocatalytic properties. J Clean Prod 196:594

    Article  CAS  Google Scholar 

  27. Jing M, Che J, Xu S, Liu Z, Fu Q (2018) The effect of surface modification of glass fiber on the performance of poly (lactic acid) composites: graphene oxide versus silane coupling agents. Appl Surf Sci 435:1046

    Article  CAS  Google Scholar 

  28. Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5:2318

    Article  CAS  Google Scholar 

  29. Vimberg V, Cavanagh JP, Benada O, Kofroňová O, Hjerde E, Zieglerová L, Balíková Novotná G (2018) Teicoplanin resistance in Staphylococcus haemolyticus is associated with mutations in histidine kinases VraS and WalK. Diagn Microbiol Infect Dis 90:233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Jiangsu Province, China (BK20160938), Natural Science Foundation of China (51708297) and Scientific Research Foundation for High-level Talents of Nanjing Forestry University (GXL2016021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Gan or Lijie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Geng, A., Jin, L. et al. Antibacterial nanocomposite based on carbon nanotubes–silver nanoparticles-co-doped polylactic acid. Polym. Bull. 77, 793–804 (2020). https://doi.org/10.1007/s00289-019-02776-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02776-1

Keywords

Navigation