Skip to main content
Log in

A Facile Approach towards Fabrication of Electrospun Nanofibrous Mats based Multicompartment Wound Dressing Fabric

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We have designed an efficient wound dressing fabric consisting of physically attached multicompartment (three layers) electrospun nanofibrous mats. Electrospining technique enables abundant porosity and large surface area into the fabric, ensuring enhanced water absorption and cell respiration purposes. Blend of water insoluble, biocompatible, antifungal, bactericidal, and glutinous chitosan with flexible polyethylene oxide (PEO) and herbomettalic mica has been used as the inner layer. Oxygen permeable, tissue compatible, and flexible thermoplastic polyurethane (TPU) has been used as the outer layer. Using some facile chemical approaches, blends of natural polysaccharide pullulan/polyvinyl alcohol (PVA), and in situ polymerized poly (acrylic acid-co-acrylamide)/PVA have been synthesized to fabricate the superabsorbent polymeric materials (SPM) based middle layers of the No. 1 and No. 2 dressings, respectively. The blend ratio, solution viscosity, and electrospinning conditions (i.e., voltage, injection rate, tip-to-collector distance, etc.) have been optimized to prepare each layers of the desired fabrics. Scanning electron microscope (SEM) images, water uptake measurements, and mechanical and thermal properties have been considered to characterize the fabric properties. Because of the more polar functional groups (i.e., -COOH, -CONH2, and -OH) and more crosslinking within the middle layer by glutaraldehyde, No. 2 fabric shows excellent mechanical property (i.e., tensile strength of > 11 MPa), faster (110 seconds) and higher (95%) fluid absorption efficacy, and better reusability (only 16% of water retention after drying for 7 days at room temperature) than No. 1 fabric. No. 1 fabric, in contrast, mainly consisting of H-bonding among the polymers having only -OH functional group, shows < 10 MPa of tensile strength, 75% fluid absorption within 150 seconds and poor reusability (27% of water retention).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Huber, G. Tegl, A. Mensah, B. Beer, M. Baumann, N. Borth, and G. M. Guebitz, ACS Appl. Mater. Interfaces, 9, 15307 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. B. V. Worley, R. J. Soto, P. C. Kinsley, and M. H. Schoenfisch, ACS Biomater. Sci. Eng., 2, 426 (2016).

    Article  CAS  Google Scholar 

  3. E. A. Kamoun, E. R. S. Kenawy, and X. Chen, J. Adv. Res., 8, 217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. I. Bano, M. Arshad, T. Yasin, M. A. Ghauri, and M. Younus, Int. J. Biol. Macromol., 102, 380 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. A. R. Unnithan, A. R. Sasikala, C. H. Park, and C. S. Kim, in Polyurethane Polymers, S. Thomas, J. Datta, J. T. Haponiuk, and A. Reghunadhan, Eds., Elsevier, New York, 2017, Chap. 9, pp. 233–246.

  6. S. P. Miguel, D. R. Figueira, D. Simões, M. P. Ribeiro, P. Coutinho, P. Ferreira, and I. J. Correia, Colloids Surf. B, 169, 60 (2018).

    Article  CAS  Google Scholar 

  7. E. Caló, L. Ballamy, and V. V. Khutoryanskiy, Hydrogels in Wound Management in Hydrogels: Design, Synthesis and Application in Drug Delivery and Regenerative Medicine, CRC Press, UK, 2018.

    Google Scholar 

  8. W. Xu, Q. Song, J. F. Xu, M. J. Serpe, and X. Zhang, ACS Appl. Mater. Interfaces, 9, 11368 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Y. Xiao, L. A. Reis, N. Feric, E. J. Knee, J. Gu, S. Cao, and M. Radisic, Proc. Natl. Acad. Sci. U.S.A., 113, E5792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. S. Brown, B. Ashley, and A. Koh, Front. Bioeng. Biotechnol., 6, 47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. E. M. Ahmed, J. Adv. Res., 6, 105 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. M. Pakravan, M. C. Heuzey, and A. Ajji, Biomacromolecules, 13, 412 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. J. Lin, C. Li, Y. Zhao, J. Hu, and L. M. Zhang, ACS Appl. Mater. Interfaces, 4, 1050 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. A. K. Azad, N. Sermsintham, S. Chandrkrachang, and W. F. Stevens, J. Biomed. Mater. Res., Part B, 69, 216 (2004).

    Article  CAS  Google Scholar 

  15. Q. Chen, Z. X. Xin, P. Saha, and J. K. Kim, J. Polym. Eng., 37, 461 (2017).

    Article  CAS  Google Scholar 

  16. W. Xu, Z. Wang, Y. Liu, L. Wang, Z. Jiang, T. Li, W. Zhang, and Y. Liang, Carbohydr. Polym., 192, 240 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. J. P. Chen, G. Y. Chang, and J. K. Chen, Colloids Surf. A, 313, 183 (2008).

    Article  CAS  Google Scholar 

  18. M. Ignatova, N. Manolova, N. Markova, and I. Rashkov, Macromol. Biosci., 9, 102 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. S. Lu, W. Gao, and H. Y. Gu, Burns, 34, 623 (2008).

    Article  PubMed  Google Scholar 

  20. M. N. R. Kumar, React. Funct. Polym., 46, 1 (2000).

    Article  CAS  Google Scholar 

  21. T. T. Yuan, A. M. D. Foushee, M. C. Johnson, A. R. Jockheck–Clark, and J. M. Stahl, Nanoscale Res. Lett., 13, 88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Wijenayake, A. Pitawala, R. Bandara, and C. Abayasekara, J. Ethnopharmacol., 155, 1001 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. A. U. Wijenayake, C. L. Abayasekara, H. M. T. G. A. Pitawala, and B. M. R. Bandara, BMC Complement. Altern. Med., 16, 365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. P. M. Claesson and B. W. Ninham, Langmuir, 8, 1406 (1992).

    Article  CAS  Google Scholar 

  25. F. Kong, S. Wang, W. Gao, and P. Fatehi, RSC Adv., 8, 12322 (2018).

    Article  CAS  Google Scholar 

  26. S. Shukla and A. K. Bajpai, J. Appl. Polym. Sci., 102, 84 (2006).

    Article  CAS  Google Scholar 

  27. D. Ma, B. Zhu, B. Cao, J. Wang, and J. Zhang, J. Macromol. Sci., Part B: Phys., 55, 1124 (2016).

    Article  CAS  Google Scholar 

  28. M. J. Zohuriaan–Mehr and K. Kabiri, Iran. Polym. J., 17, 451 (2008).

    Google Scholar 

  29. H. Byun, B. Hong, S. Y. Nam, S. Y. Jung, J. W. Rhim, S. B. Lee, and G. Y. Moon, Macromol. Res., 16, 189 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Kuk Kim.

Additional information

Acknowledgments: This work was supported by the Gyeongsang National University Fund for Professors on Sabbatical Leave, 2017 and Materials and Components Technology Development Program of MOTIE/KEIT (10067683, Development of Manufacturing Technology of High Barrier Elastomeric Material).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Sinha, T.K., Li, H. et al. A Facile Approach towards Fabrication of Electrospun Nanofibrous Mats based Multicompartment Wound Dressing Fabric. Macromol. Res. 26, 1265–1272 (2018). https://doi.org/10.1007/s13233-019-7028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7028-1

Keywords

Navigation