Skip to main content
Log in

Batch Preparation and Characterization of Electrospun Porous Polylactic Acid-Based Nanofiber Membranes for Antibacterial Wound Dressing

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

A good wound dressing needs to promote wound healing and tissue repair when the skin is injured. In this study, a self-made spherical section free surface electrospinning device was used to produce large quantities of electrospun porous polylactic acid (PLA)/chitosan (CS)/aloin nanofiber membranes (NFMs) for antibacterial wound dressing. The porous structures of PLA-based nanofibers were controlled by adjusting the weight ratios of mixed solvent and solute. The results showed that high-quality porous PLA/CS/aloin (PCA) NFMs were obtained when the weight ratios of chloroform/NN-dimethylformamide and PLA: CS were 90/10 and 7:1, respectively. The porous PCA NFMs exhibited high porosity, acceptable mechanical properties, moderate hydrophobicity, good swelling property, and high water vapor transmission rate. Moreover, they also showed excellent blood coagulative, antibacterial, biocompatible properties, which had the potential to be used in the application of antibacterial wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Muhlstadt M, Thome C, Kunte C. Rapid wound healing of scalp wounds devoid of periosteum with milling of the outer table and split-thickness skin grafting. Br J Dermatol 2012;167:343–7.

    Article  CAS  Google Scholar 

  2. Yang QW, Xie ZG, Hu JL, Liu YC. Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater Sci Eng C 2021;128:112319.

    Article  CAS  Google Scholar 

  3. Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol 2020;10:200223.

    Article  CAS  Google Scholar 

  4. Li H, Wang Z, Zhang H, Pan Z. Nanoporous PLA/(chitosan nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance. Polymers 2018;10:1085.

    Article  CAS  Google Scholar 

  5. Liu S, Qin SH, He M, Zhou DF, Qin QD, Wang H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos B 2020;199:108238.

    Article  CAS  Google Scholar 

  6. Gomaa SF, Madkour TM, Moghannem S, El-Sherbiny IM. New polylactic acid/ cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int J Biol Macromol 2017;105:1148–60.

    Article  CAS  Google Scholar 

  7. Santos VP, Marques NSS, Maia PCSV, de Lima MAB, Franco LD, de Campos-Takaki GM. Seafood waste as attractive source of chitin and chitosan production and their applications. Int J Mol Sci 2020;21:4290.

    Article  CAS  Google Scholar 

  8. Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int J Pharm 2021;596:120213.

    Article  CAS  Google Scholar 

  9. Peluso G, Petillo O, Ranieri M, Santin M, Ambrosic L, Calabró D, Avallone B, Balsamo G. Chitosan-mediated stimulation of macrophage function. Biomaterials 1994;15:1215–20.

    Article  CAS  Google Scholar 

  10. Feng PP, Luo Y, Ke CH, Qiu HF, Wang W, Zhu YB, Hou RX, Xu L, Wu SZ. Chitosan-based functional materials for skin wound repair: mechanisms and applications. Front Bioeng Biotechnol 2021;9:650598.

    Article  Google Scholar 

  11. Dai TH, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther 2011;9:857–79.

    Article  CAS  Google Scholar 

  12. Xu T, Yang H, Yang D, Yu ZZ. Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl Mater Interfaces 2017;9:21094–104.

    Article  CAS  Google Scholar 

  13. Thomas MS, Pillai PKS, Faria M, Cordeiro N, Barud H, Thomas S, Pothen LA. Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. J Mater Sci: Mater Med 2018;29:137.

    Google Scholar 

  14. Shan XQ, Li FQ, Liu CS, Gao Q. Electrospinning of chitosan/poly(lactic acid) nanofibers: the favorable effect of nonionic surfactant. J Appl Polym Sci 2014;131:41098.

    Article  CAS  Google Scholar 

  15. Mao DY, Li Q, Bai NN, Dong HZ, Li DK. Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr Polym 2018;180:104–11.

    Article  CAS  Google Scholar 

  16. Shen R, Xu W, Xue Y, Chen L, Ye H, Zhong E, Ye Z, Gao J, Yan Y. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering. Artif Cells Nanomed Biotechnol 2018;46:419–30.

    Article  CAS  Google Scholar 

  17. Zhu HT, Qiu SS, Jiang W, Wu DX, Zhang CY. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environ Sci Technol 2011;45:4527–31.

    Article  CAS  Google Scholar 

  18. Silva SS, Caridade SG, Mano JF, Reis RL. Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydr Polym 2013;98:581–8.

    Article  CAS  Google Scholar 

  19. Yin J, Xu L. Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing. Int J Biol Macromol 2020;160:352–63.

    Article  CAS  Google Scholar 

  20. Li L, Gao S, Peng L, Wang X, Zhang Y, Hu Z, Gao J. Evaluation of efficacy of aloin in treating acute trauma in vitro and in vivo. Biomed Pharmacother 2017;88:1211–9.

    Article  CAS  Google Scholar 

  21. Park MY, Kwon HJ, Sung MK. Evaluation of aloin and aloe-emodin as anti-inflammatory agents in aloe by using murine macrophages. Biosci Biotechnol Biochem 2009;73:828–32.

    Article  CAS  Google Scholar 

  22. Pan Q, Pan HM, Lou HZ, Xu YH, Tian L. Inhibition of the angiogenesis and growth of aloin in human colorectal cancer in vitro and in vivo. Cancer Cell Int 2013;13:69.

    Article  CAS  Google Scholar 

  23. Xie J, Li X, Xia Y. Putting Electrospun nanofibers to work for biomedical research. Macromol Rapid Commun 2008;29:1775–92.

    Article  CAS  Google Scholar 

  24. Sharma K, Bullock A, Ralston D, MacNeil S. Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute. Burns 2014;40:957–65.

    Article  Google Scholar 

  25. Mirsian S, Khodadadian A, Hedayati M, Manzour-ol-Ajdad A, Kalantarinejad R, Heitzinger C. A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens Bioelectron 2019;142:111527.

    Article  CAS  Google Scholar 

  26. Khodadadian A, Hosseini K, Manzour-Ol-Ajdad A, Hedayati M, Kalantarinejad R, Heitzinger C. Optimal design of nanowire field-effect troponin sensors. Comput Biol Med 2017;87:46–56.

    Article  CAS  Google Scholar 

  27. Khodadadian A, Stadlbauer B, Heitzinger C. Bayesian inversion for nanowire field-effect sensors. J Comput Electron 2020;19:147–59.

    Article  CAS  Google Scholar 

  28. Khodadadian A, Heitzinger C. A transport equation for confined structures applied to the OprP, Gramicidin A, and KcsA channels. J Comput Electron 2015;14:524–32.

    Article  CAS  Google Scholar 

  29. Xiong R, Hua D, Van Hoeck J, Berdecka D, Leger L, De Munter S, Fraire JC, Raes L, Harizaj A, Sauvage F, Goetgeluk G, Pille M, Aalders J, Belza J, Van Acker T, Bolea-Fernandez E, Si T, Vanhaecke F, De Vos WH, Vandekerckhove B, van Hengel J, Raemdonck K, Huang C, De Smedt SC, Braeckmans K. Photothermal nanofibres enable safe engineering of therapeutic cells. Nat Nanotechnol 2021;16:1281–91.

    Article  CAS  Google Scholar 

  30. Wang Y, Xu L. Preparation and characterization of porous core-shell fibers for slow release of tea polyphenols. Polymers 2018;10:144.

    Article  CAS  Google Scholar 

  31. Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenstrom P. Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromol 2008;9:1044–9.

    Article  CAS  Google Scholar 

  32. Miao X, Lin J, Bian F. Utilization of discarded crop straw to produce cellulose nanofibrils and their assemblies. J Bioresour Bioprod 2020;5:26–36.

    Article  Google Scholar 

  33. Wang CY, Wang J, Zeng LD, Qiao ZW, Liu XC, Liu H, Zhang J, Ding JX. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 2019;24:834.

    Article  CAS  Google Scholar 

  34. Huang C, Thomas NL. Fabricating porous poly(lactic acid) fibres via electrospinning. Eur Polym J 2018;99:464–76.

    Article  CAS  Google Scholar 

  35. Yin J, Ahmed A, Xu L. High-throughput free surface electrospinning using solution reservoirs with different depths and its preparation mechanism study. Adv Fiber Mater 2021;3:251–64.

    Article  CAS  Google Scholar 

  36. Lu L, Wu D, Zhang M, Zhou W. Fabrication of polylactide/poly(ε-caprolactone) blend fibers by electrospinning: morphology and orientation. Ind Eng Chem Res 2012;51:3682–91.

    Article  CAS  Google Scholar 

  37. Fang Y, Xu L. Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers. Beilstein J Nanotechnol 2019;10:2261–74.

    Article  CAS  Google Scholar 

  38. Miguel SP, Ribeiro MP, Coutinho P, Correia IJ. Electrospun polycaprolactone/aloe vera_chitosan nanofibrous asymmetric membranes aimed for wound healing applications. Polymers 2017;9:183.

    Article  CAS  Google Scholar 

  39. Li CW, Fu RQ, Yu CP, Li ZH, Guan HY, Hu DQ, Zhao DH, Lu LC. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study. Int J Nanomed 2013;8:4131–45.

    Google Scholar 

  40. Wang Y, Xiao D, Zhong Y, Zhang L, Chen Z, Sui X, Wang B, Feng X, Xu H, Mao Z. Facile fabrication of carboxymethyl chitosan/paraffin coated carboxymethylated cotton fabric with asymmetric wettability for hemostatic wound dressing. Cellulose 2020;27:3443–53.

    Article  CAS  Google Scholar 

  41. Sun FL, Zheng M. Antibacterial activity of polyester fabric treated with nano-TiO2 via one-bath process. Adv Mater Res 2013;843:58–65.

    Article  CAS  Google Scholar 

  42. Shin YC, Lee JH, Kim MJ, Park JH, Kim SE, Kim JS, Oh JW, Han DW. Biomimetic hybrid nanofiber sheets composed of RGD peptide-decorated PLGA as cell-adhesive substrates. J Funct Biomater 2015;6:367–78.

    Article  CAS  Google Scholar 

  43. Yin J, Fang Y, Xu L, Ahmed A. High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering. Int J Biol Macromol 2021;183:1210–21.

    Article  CAS  Google Scholar 

  44. Mohammadian M, Haghi AK. Systematic parameter study for nano-fiber fabrication via electrospinning process. Bulg Chem Commun 2014;46:545–55.

    Google Scholar 

  45. Yang T, Wu DF, Lu LL, Zhou WD, Zhang M. Electrospinning of polylactide and its composites with carbon nanotubes. Polym Compos 2011;32:1280–8.

    Article  CAS  Google Scholar 

  46. Hang TA, Lan NP, Thu HTV, Park JS. Fabrication of an antibacterial non-woven mat of a poly(lactic acid)/chitosan blend by electrospinning. Macromol Res 2012;20:51–8.

    Article  CAS  Google Scholar 

  47. Casasola R, Thomas NL, Georgiadou S. Electrospinning of poly(lactic acid): theoretical approach for the solvent selection to produce defect-free nanofibers. J Polym Sci Part B Polym Phys 2016;54:1483–98.

    Article  CAS  Google Scholar 

  48. Wang FF, Sun ZY, Yin J, Xu L. Preparation, characterization and properties of porous PLA/PEG/Curcumin composite nanofibers for antibacterial application. Nanomaterials 2019;9:508.

    Article  CAS  Google Scholar 

  49. Singh S, Anjum S, Joy J, Gupta B. Polysaccharide-aloe vera bioactive hydrogels as wound care system. In: Mondal M, editors. Cellulose-based superabsorbent hydrogels. Polymers and Polymeric Composites: A Reference Series. 2019;48:1473–90.

  50. Esyanti R, Zaskia H, Amalia A, Nugrahapraja H. Chitosan nanoparticle-based coating as postharvest technology in banana. J Phys Conf Ser 2019;1204:012109.

    Article  CAS  Google Scholar 

  51. Xu R, Xia HS, He WF, Li ZC, Zhao J, Liu B, Wang YZ, Lei Q, Kong Y, Bai Y, Yao ZH, Yan RS, Li HS, Zhan RX, Yang SS, Luo GX, Wu J. Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep 2016;6:24596.

    Article  CAS  Google Scholar 

  52. Dutta J, Mohini P. Effect of degree of deacetylation and molecular weight on physicochemical properties of chitosan films. J Indian Chem Soc 2020;97:731–5.

    CAS  Google Scholar 

  53. Dong YL, Kong JH, Phua SL, Zhao CY, Thomas NL, Lu XH. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push-pull effects for moisture wicking. ACS Appl Mater Interfaces 2014;6:14087–95.

    Article  CAS  Google Scholar 

  54. Zou PF, Lee WH, Gao Z, Qin D, Wang Y, Liu J, Sun T, Gao Y. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles. Carbohydr Polym 2020;232:115786.

    Article  CAS  Google Scholar 

  55. Zakaria Z, Islam MS, Hassan A, Mohamad Haafiz MK, Arjmandi R, Inuwa IM, Hasan M. Mechanical properties and morphological characterization of PLA/Chitosan/Epoxidized natural rubber composites. Adv Mater Sci Eng 2013;3:10413–20.

    Google Scholar 

  56. Chan KYT, Yong ASM, Wang X, Ringgold KM, St John AE, Baylis JR, White NJ, Kastrup CJ. The adhesion of clots in wounds contributes to hemostasis and can be enhanced by coagulation factor XIII. Sci Rep 2020;10:20116.

    Article  CAS  Google Scholar 

  57. Wang CH, Cherng JH, Liu CC, Fang TJ, Hong ZJ, Chang SJ, Fan GY, Hsu SD. Procoagulant and antimicrobial effects of chitosan in wound healing. Int J Mol Sci 2021;22:7067.

    Article  CAS  Google Scholar 

  58. Filmon R, Basle MF, Atmani H, Chappard D. Adherence of osteoblast-like cells on calcospherites developed on a biomaterial combining poly(2-hydroxyethyl) methacrylate and alkaline phosphatase. Bone 2002;30:152–8.

    Article  CAS  Google Scholar 

  59. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res Part A 2003;67:531–7.

    Article  CAS  Google Scholar 

  60. Meng FL, Chian KS, Mhaisalkar PS, Ong WF, Ratner BD. Effect of electrospun poly(d, l-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J Biomed Mater Res Part A 2009;89:1040–8.

    Google Scholar 

Download references

Acknowledgements

The work is supported financially by National Natural Science Foundation of China (Grant no. 11672198), Jiangsu Higher Education Institutions of China (Grant no. 20KJA130001), Six Talent Peaks Project of Jiangsu Province (Grant no. GDZB-050), and PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions).

Author information

Authors and Affiliations

Authors

Contributions

JY and LX designed the experiments. JY performed the experiments and characterization, analyzed the data, and wrote the paper. LX supervised the data analysis and revised the paper. AA revised the paper.

Corresponding author

Correspondence to Lan Xu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Xu, L. & Ahmed, A. Batch Preparation and Characterization of Electrospun Porous Polylactic Acid-Based Nanofiber Membranes for Antibacterial Wound Dressing. Adv. Fiber Mater. 4, 832–844 (2022). https://doi.org/10.1007/s42765-022-00141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00141-y

Keywords

Navigation