Skip to main content
Log in

Communities of arbuscular mycorrhizal fungi under Picconia azorica in native forests of Azores

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) from the rhizosphere of the endemic Laurisilva tree, Picconia azorica, were characterised at two sites in each of two Azorean islands (Terceira and São Miguel). Forty-six spore morphotypes were found, and DNA extraction was attempted from individual spores of each of these. DNA was obtained from 18 of the morphotypes, from which a 1.5 kb long fragment of the nuclear ribosomal RNA gene (SSU-ITS-LSU) was sequenced. A total of 125 AMF sequences were obtained and assigned to 18 phylotypes. Phylogenetic analysis revealed sequences belonging to the families, Acaulosporaceae, Archaeosporaceae, Claroideoglomeraceae, Gigasporaceae and Glomeraceae. Phylotype richness changed between islands and between sampling sites at both islands suggesting that geographical and historical factors are determinant in shaping AMF communities in native forest of Azores. Ecological analysis of the molecular data revealed differences in AMF community composition between islands. In Terceira, the rhizosphere of P. azorica was dominated by species belonging to Acaulosporaceae and Glomeraceae, while São Miguel was dominated by members of Glomeraceae and Gigasporaceae. This is the first molecular study of AMF associated with P. azorica in native forest of the Azores. These symbiont fungi are key components of the ecosystem. Further research is needed to develop their use as promoters of plant establishment in conservation and restoration of such sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AL-Ghamdi AA, Jais HM (2012) Interaction between soil textural components, flavonoids in the roots and mycorrhizal colonization in ‘Juniperus procera in Saudi Arabia. Afr J Microbiol Res 7:996–1001

    Google Scholar 

  • Alguacil MM, Lumini E, Roldan A et al (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    Article  CAS  PubMed  Google Scholar 

  • Bainard LD, Bainard JD, Hamel C, Gan Y (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 88:333–344. doi:10.1111/1574-6941.12300

    Article  CAS  PubMed  Google Scholar 

  • Berger SA, Krompass D, Stamatakis A (2011) Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 60:291–302. doi:10.1093/sysbio/syr010

    Article  PubMed  PubMed Central  Google Scholar 

  • Borges PAV, Brown VK (1999) Effect of island geological age on the arthropod species richness of Azorean pastures. Biol J Linn Soc 66:373–410

    Article  Google Scholar 

  • Borges PAV, Hortal J (2009) Time, area and isolation: factors driving the diversification of Azorean arthropods. J Biogeogr 36:178–191

    Article  Google Scholar 

  • Borges PAV, Ugland KI, Dinis FO, Gaspar C (2008) Insect and spider rarity in an oceanic island (Terceira, Azores): true rare and pseudo-rare species. In: Fattorini S (ed) Insect ecology and conservation. Research Signpost, Kerala (India) pp 47–70

  • Boyer LR, Brain P, Xu X-M, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25:215–227. doi:10.1007/s00572-014-0603-6

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC, Ashwath N (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil 370:419–433. doi:10.1007/s11104-013-1613-4

    Article  CAS  Google Scholar 

  • Caporaso JG, Bittinger K, Bushman FD et al (2010a) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. doi:10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010b) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso P, Gaspar C, Pereira LC et al (2008) Assessing spider species richness and composition in Mediterranean cork oak forests. Acta Oecol 33:114–127. doi:10.1016/j.actao.2007.10.003

    Article  Google Scholar 

  • Clapp JP, Rodriguez AR, Dodd JC (2002) Glomales rRNA gene diversity – all that glistens is not necessarily glomalean? Mycorrhiza 12:260–270

  • de la Providencia IE, Stefani FOP, Labridy M, et al (2015) Arbuscular mycorrhizal fungal diversity associated with Eleocharis obtusa and Panicum capillare growing in an extreme petroleum hydrocarbon-polluted sedimentation basin. FEMS Microbiol Lett 362:fnv081. doi: 10.1093/femsle/fnv081

  • de Oliveira AN, de Oliveira LA (2010) Influence of edapho-climatic factors on the sporulation and colonization of arbuscular mycorrhizal fungi in two Amazonian native fruit species. Braz Arch Biol Technol 53:653–661. doi:10.1590/S1516-89132010000300021

  • Dias E (1996) Ecologia e sintaxonomia das florestas naturais. Ph.D. Dissertation, University of the Azores

  • dos Santos R, Girardi CG, Pescador R, Stürmer SL (2010) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on post vitro growth of micropropagated Zingiber officinale Roscoe. Rev Bras Ciênc Solo 34:765–771. doi:10.1590/S0100-06832010000300018

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Ferrol N, Calvente R, Cano C et al (2004) Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification-threatened semiarid Mediterranean ecosystem. Appl Soil Ecol 25:123–133. doi:10.1016/j.apsoil.2003.08.006

    Article  Google Scholar 

  • Gaspar C, Borges PA, Gaston KJ (2008) Diversity and distribution of arthropods in native forests of the Azores archipelago. Arquip Life Mar Sci 25:01–30

    Google Scholar 

  • Gilmore AE (1968) Phycomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia 39:87–105

    Article  Google Scholar 

  • González-Cortés JC, Vega-Fraga M, Varela-Fregoso L et al (2012) Arbuscular mycorrhizal fungal (AMF) communities and land use change: the conversion of temperate forests to avocado plantations and maize fields in central Mexico. Fungal Ecol 5:16–23. doi:10.1016/j.funeco.2011.09.002

    Article  Google Scholar 

  • Gruenstaeudl M, Santos-guerra A, Hawkes CV, Jansen RK (2013) Molecular survey of arbuscular mycorrhizal fungi associated with Tolpis on three Canarian islands (Asteraceae). Vieraea 41:199–218

    Google Scholar 

  • Hart MM, Reader RJ (2002) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils 36:357–366. doi:10.1007/s00374-002-0539-4

    Article  Google Scholar 

  • Helgason T, Merryweather JW, Denison J et al (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  • Helgason T, Merryweather JW, Young JPW, Fitter AH (2007) Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community. J Ecol 95:623–630. doi:10.1111/j.1365-2745.2007.01239.x

    Article  CAS  Google Scholar 

  • Henderson PA, Seaby RMH (2002) Species diversity and richness, version 3.0. Pisces Conservation Ltd., www.pisces-conservation.com. (http://www.pisces-conservation.com). Accessed 27 Aug 2016

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. doi:10.1016/j.phytochem.2006.09.023

    Article  CAS  PubMed  Google Scholar 

  • Husband R, Herre EA, Turner SL et al (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  CAS  PubMed  Google Scholar 

  • Ismail Y, Hijri M (2012) Arbuscular mycorrhisation with Glomus irregulare induces expression of potato PR homologues genes in response to infection by Fusarium sambucinum. Funct Plant Biol 39:236. doi:10.1071/FP11218

    Article  Google Scholar 

  • Jansa J, Mozafar A, Anken T et al (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234. doi:10.1007/s00572-002-0163-z

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223. doi:10.1111/j.1469-8137.2009.02835.x

  • Krüger M, Krüger C, Walker C et al (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984. doi:10.1111/j.1469-8137.2011.03962.x

    Article  PubMed  Google Scholar 

  • Krüger M, Teste FP, Laliberté E et al (2015) The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Mol Ecol 24:4912–4930. doi:10.1111/mec.13363

    Article  PubMed  Google Scholar 

  • Leake J, Johnson D, Donnelly D et al (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045. doi:10.1139/b04-060

    Article  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR et al (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105. doi:10.1111/j.1365-2745.2006.01193.x

    Article  Google Scholar 

  • Lumini E, Orgiazzi A, Borriello R et al (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol. doi:10.1111/j.1462-2920.2009.02099.x

    PubMed  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science, Oxford

    Google Scholar 

  • Martins AM (1993) The Azores-westernmost Europe: where evolution can be caught red-handed. Mus Mun Funchal 2:181–198

    Google Scholar 

  • Martins J, Moreira O, Silva L, Moura M (2011) Vegetative propagation of the endangered Azorean tree, Picconia azorica. Arquip Life Mar Sci28:39–46

  • Melo CD, Walker C, Rodríguez-Echeverría S et al (2014) Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores). Symbiosis 64:73–85. doi:10.1007/s13199-014-0303-1

    Article  Google Scholar 

  • Melo CD, Luna S, Krüger C et al (2017) Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest. Acta Oecol. doi:10.1016/j.actao.2016.12.006

    Google Scholar 

  • Mendonça D, Luna S, Bettencourt S et al (2015) In vitro propagation of Picconia azorica (Tutin) Knobl. (Oleaceae) an Azorean endangered endemic plant species. Acta Physiol Plant 37:47. doi:10.1007/s11738-015-1797-8

  • Middleton EL, Richardson S, Koziol L, et al (2015) Locally adapted arbuscular mycorrhizal fungi improve vigor and resistance to herbivory of native prairie plant species. Ecosphere 6:art276. doi: 10.1890/ES15-00152.1

  • Minitab I (2000) Minitab: release 13 for Windows. Minitab Inc., State College

    Google Scholar 

  • Moora M, Davison J, Öpik M et al (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90:609–621. doi:10.1111/1574-6941.12420

    Article  CAS  PubMed  Google Scholar 

  • Mummey DL, Rillig MC (2006) The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:81–90. doi:10.1007/s11104-006-9091-6

    Article  CAS  Google Scholar 

  • Nam Y-J, Kim H, Lee J-H et al (2015) Metagenomic analysis of soil fungal communities on Ulleungdo and Dokdo Islands. J Gen Appl Microbiol 61:67–74. doi:10.2323/jgam.61.67

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A et al (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738. doi:10.1016/j.soilbio.2010.01.006

    Article  CAS  Google Scholar 

  • Öpik M, Metsis M, Daniell TJ et al (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437. doi:10.1111/j.1469-8137.2009.02920.x

    Article  PubMed  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H et al (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531. doi:10.1007/s00572-013-0486-y

    Article  PubMed  Google Scholar 

  • Rodríguez-Echeverría S, Freitas H (2006) Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes. Mycorrhiza 16:543–552. doi:10.1007/s00572-006-0070-9

    Article  PubMed  Google Scholar 

  • Schlaeppi K, Bender SF, Mascher F et al (2016) High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol 212:780–791. doi:10.1111/nph.14070

    Article  CAS  PubMed  Google Scholar 

  • Schneider KD, Lynch DH, Dunfield K et al (2015) Farm system management affects community structure of arbuscular mycorrhizal fungi. Appl Soil Ecol 96:192–200. doi:10.1016/j.apsoil.2015.07.015

    Article  Google Scholar 

  • Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21:211–220. doi:10.1007/s00572-010-0325-3

    Article  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101:599–611. doi:10.3852/08-169

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Shah MA, Beaulieu M-E, Reshi ZA et al (2015) A cross-city molecular biogeographic investigation of arbuscular mycorrhizas in Conyza canadensis rhizosphere across native and non-native regions. Ecol Process. doi:10.1186/s13717-015-0034-0

    Google Scholar 

  • Shukla A, Kumar A, Jha A et al (2013) Soil moisture levels affect mycorrhization during early stages of development of agroforestry plants. Biol Fertil Soils 49:545–554. doi:10.1007/s00374-012-0744-8

    Article  CAS  Google Scholar 

  • Silva L, Martins M, Maciel G, Moura M (2009) Flora Vascular dos Açores - Prioridades em Conservação. Azorean Vascular Flora - Priorities in Conservation. Bilingue. Associação Ecológica Amigos dos Açores & CCPA, Ponta Delgada

    Google Scholar 

  • Smith ES, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) “ Glomus intraradices DAOM197198”, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187. doi:10.1111/j.1469-8137.2009.02874.x

    Article  PubMed  Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474. doi:10.1111/j.1469-8137.2010.03262.x

    Article  CAS  PubMed  Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical ordination, version 4.5. Microcomputer power, Ithaca, NewYork

  • Trejo D, Barois I, Sangabriel-Conde W (2016) Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi. Agrofor Syst 90:265–279. doi:10.1007/s10457-015-9852-4

    Article  Google Scholar 

  • Triantis KA, Borges PAV, Ladle RJ et al (2010) Extinction debt on oceanic islands. Ecography 33:285–294. doi:10.1111/j.1600-0587.2010.06203.x

    Google Scholar 

  • Turrini A, Giovannetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza 22:81–97. doi:10.1007/s00572-011-0419-6

    Article  PubMed  Google Scholar 

  • van der Gast CJ, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13:241–249. doi:10.1111/j.1462-2920.2010.02326.x

    Article  PubMed  Google Scholar 

  • van der Heijden MG, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:912–927

    Google Scholar 

  • Verbruggen E, Röling WFM, Gamper HA et al (2010) Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979. doi:10.1111/j.1469-8137.2010.03230.x

    Article  CAS  PubMed  Google Scholar 

  • Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fertil Soils 49:1027–1037. doi:10.1007/s00374-013-0801-y

    Article  Google Scholar 

  • Violi HA, Barrientos-Priego AF, Wright SF et al (2008) Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For Ecol Manag 254:276–290. doi:10.1016/j.foreco.2007.08.016

    Article  Google Scholar 

  • Walker C (1992) Systematics and taxonomy. Agronomie 12:887–897

    Article  Google Scholar 

  • Wang Y, Huang Y, Qiu Q et al (2011) Flooding greatly affects the diversity of Arbuscular Mycorrhizal fungi communities in the roots of wetland plants. PLoS One 6:e24512. doi:10.1371/journal.pone.0024512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe BE, Mummey DL, Rillig MC, Klironomos JN (2007) Small-scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community. Mycorrhiza 17:175–183. doi:10.1007/s00572-006-0089-y

    Article  PubMed  Google Scholar 

  • Wu Q-S, Srivastava AK, Zou Y-N (2013) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87. doi:10.1016/j.scienta.2013.09.010

    Article  CAS  Google Scholar 

  • Wubet T, Weiß M, Kottke I et al (2003) Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytol 161:517–528. doi:10.1046/j.1469-8137.2003.00924.x

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Luís Vasco Nunes of Regional Institute of Agrarian Planning for providing the aerial photographs. Many thanks to Paulo Borges of cE3c- Azorean Biodiversity Group for providing the software packages Species Diversity and Richness IV for the paper, and also for the work reviewed here, and also Reinaldo Pimentel of Azorean Biodiversity Group (CITA-A) for providing the imaging software. We gratefully acknowledge financial support for this research from the Portuguese Fundação para a Ciência e a Tecnologia (PTDC/AGR-ALI/122152/2010, SFRH/BPD/78059/2011 and UID/GEO/04035/2013) and Fundo Regional para a Ciência e Tecnologia – Governo dos Açores (M317/F/010A/2009 and M312/F/041/2011). C. Krüger was supported by the long-term research development project RVO 67985939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Drumonde Melo.

Electronic supplementary material

Figure S1

Maximum likelihood consensus and Evolutionary Placement Algorithm (EPA) phylogenetic trees calculated by RaxML. Grouped into A) backbone phylogenetic tree and B) EPA trees achieved by applying different sequence similarity threshold 97, 98 and 99% (from left to right) using UPARSE. AMF sequences found in Picconia azorica roots marked in blue. Scale bar shows number of substitution per site. (PDF 164 kb)

Figure S2

Full maximum likelihood phylogenetic tree, spanning a part of the SSU, the full ITS1-5.8S-ITS2 region and a large part of the LSU rRNA gene regions (ca. 1.5 kb long), including the AMF sequences found in Picconia azorica roots marked in blue. Scale bar shows number of substitution per site. (GIF 43 kb)

High Resolution (EPS 6267 kb)

Table S1

List of all detected OTUs calculated with SEED. Corresponding sequences are linked to the different OTUs achieved by the sequence similarity thresholds 97, 98 and 99%, in separated tabs. (XLS 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, C.D., Luna, S., Krüger, C. et al. Communities of arbuscular mycorrhizal fungi under Picconia azorica in native forests of Azores. Symbiosis 74, 43–54 (2018). https://doi.org/10.1007/s13199-017-0487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-017-0487-2

Keywords

Navigation