Skip to main content

Advertisement

Log in

Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores)

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Nothing is published about the arbuscular mycorrhizal fungi (AMF) of the Azores archipelago, either with regard to individual species, or at the community level. This study, based on identification through spore morphological characteristics, compares the AMF community structure of semi-natural and intensively managed pastures. Thirty-nine glomeromycotan fungal spore types were detected in soil, with species in the genera Acaulospora, Ambispora, Archaeospora, Claroideoglomus, Entrophospora, Gigaspora, Paraglomus, Sclerocystis, Scutellospora sensu Morton and Msiska (Mycorrhiza 20 483–496, 2010) and Rhizophagus. The two most representative groupings were the glomoid spore types and Acaulospora with 13 and 10 species respectively, followed by Scutellospora with 3. The glomeromycotan fungal richness was similar for both intensive and semi-natural pastures, with 28 spore types in the former and 23 in the latter but their composition differed. Semi-natural pastures were dominated by species from Acaulospora and Scutellospora, particularly S. calospora and A. cf. myriocarpa, while for intensively farmed pastures, species with glomoid spores, and members of the two genera Claroideoglomus and Paraglomus were found most frequently and abundantly. Spore densities of the most commonly found groupings — Acaulospora, Claroideoglomus, Scutellospora and the glomoid spores were correlated with soil chemical properties, suggesting that soil characteristics influence the AMF communities. These results indicate that intensity of pasture management may not influence AMF richness but is probably an important factor influencing their composition and abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agwa HE, Al-Sodany YM (2003) Arbuscular-mycorrhizal fungi (Glomales) in Egypt. III: Distribution and ecology in some plants in El-Omayed Biosphere Reserve Egyptian. J Biol 5:19–26

    Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246

    Article  CAS  PubMed  Google Scholar 

  • Azevedo E (1996) Modelação do clima insular à escala local. Modelo CIELO aplicado à ilha Terceira. Dissertation, University of Azores

  • Azevedo EB, Pereira LS, Itier B (1999) Modelling the local climate in island environments: water balance applications. Agr Water Manag 40:393–403

    Article  Google Scholar 

  • Barea JM, Jeffries P (1995) Arbuscular mycorrhizas in sustainable soil plant systems. In: Hock B, Varma A (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Heidelberg, Germany, pp 521–559

    Google Scholar 

  • Bhadalung N, Suwanarit A, Dell B, Nopamornbodi O, Thamchaipenet A, Rungchuang J (2005) Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant Soil 270:371–382

    Article  CAS  Google Scholar 

  • Blaszkowski J (2012) Glomeromycota. Krakow: W Szafer Institute of Botany, Polish Academy of Sciences

  • Boddington CL, Dodd JC (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218:137–144

    Article  CAS  Google Scholar 

  • Borges PAV (1997) Fauna de artrópodes (excl. Coleoptera) das pastagens dos Açores (S. Maria, Terceira e Pico) amostrados através da técnica do aspirador entomológico (Outono de 1994). University of Azores

  • Borges PAV, Brown VK (1999) Effect of island geological age on the arthropod species richness of Azorean pastures. Biol J Linn Soc 66:373–410

    Article  Google Scholar 

  • Borges PAV, Brown VK (2001) Phytophagous insects and web-building spiders in relation to pasture vegetation complexity. Ecography 24:68–82

    Article  Google Scholar 

  • Borges PAV, Ugland KI, Dinis FO, Gaspar C (2008) Insect and spider rarity in an oceanic island (Terceira, Azores): true rare and pseudo-rare species. In: Fattorini S (ed) Insect ecology and conservation. Research Signpost, Kerala, India, pp 47–70

    Google Scholar 

  • Börstler B, Renker C, Kahmen A, Buscot F (2006) Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biol Fert Soils 42:286–298

    Article  Google Scholar 

  • Brundrett MC, Abbott LK, Jasper DA (1999) Glomalean mycorrhizal fungi from tropical Australia. I. Comparison of the effectiveness and specificity of different isolation procedures. Mycorrhiza 8:305–314

    Article  Google Scholar 

  • Cardoso P, Henriques SS, Gaspar C, Crespo LC, Carvalho R, Schmid JB, Sousa P, Szűts T (2009) Species richness and composition assessment of spiders in a Mediterranean scrubland. J Insect Conserv 13:45–55

    Article  Google Scholar 

  • Castillo CG, Rubio R, Rouanet JL, Borie F (2006a) Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fert Soils 43:83–92

    Article  Google Scholar 

  • Castillo CG, Borie F, Godoy R, Rubio R, Sieverding E (2006b) Diversity of mycorrhizal plants species and arbuscular mycorrhizal fungi in evergreen forest, deciduous forest and grassland ecosystems of Southern Chile. J Appl Bot Food Qual 80:40–47

    Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130(2):259–265

    Article  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36:203–209

    Article  CAS  PubMed  Google Scholar 

  • Dhillion SS, Gardsjord TL (2004) Arbuscular mycorrhizas influence plant diversity, productivity, and nutrients in boreal grasslands. Can J Bot 82:104–114

    Article  Google Scholar 

  • Dias E (1996) Vegetação Natural dos Açores: Ecologia e Sintaxonomia das Florestas Naturais. Dissertation, University of Azores

  • Douds DD Jr, Millner PD (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agr Ecosyst Environ 74:77–93

    Article  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  • Eason WR, Scullion J, Scott EP (1999) Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agr Ecosyst Environ 73:245–255

    Article  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: A cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2001) Differentiation of polyphosphate metabolism between the extra-and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytol 149:555–563

    CAS  Google Scholar 

  • Gai JP, Liu RJ (2003) Effect of soil factors on AMF in the rhizosphere of wild plants. China J Appl Ecol 14:470–472

    Google Scholar 

  • Gai JP, Christie P, Feng G, Li XL (2006) Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi in China: A review. Mycorrhiza 16:229–23

    Article  CAS  PubMed  Google Scholar 

  • Gai JP, Christie P, Cai XB, Fan JQ, Zhang JL, Feng G, Li XL (2009) Occurrence and distribution of arbuscular mycorrhizal fungal species in three types of grassland community of the Tibetan Plateau. Ecol Res 24:1345–1350

    Article  Google Scholar 

  • Galvez L, Douds DD, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon vam fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308

    Article  CAS  Google Scholar 

  • Gamper H, Walker C, Schüßler A (2009) Diversispora celata sp. nov.: Molecular ecology and phylotaxonomy of an inconspicuous arbuscular mycorrhizal fungus. New Phytol 182:495–506

    Article  CAS  PubMed  Google Scholar 

  • Gange AC, Brown VK, Sinclair GS (1993) Vesicular-arbuscular mycorrhizal fungi: A determinant of plant community structure in early succession. Funct Ecol 7:616–622

    Article  Google Scholar 

  • Garcia V, Furtado M (1991) Desenvolvimento agrícola dos ecossistemas insulares açoreanos. In: Dias E, Carretas JP, Cordeiro P (eds) 1ªs Jornadas Atlânticas de Protecção do Meio Ambiente - Açores, Madeira, Canárias e Cabo Verde. Secretaria Regional do Turismo e Ambiente, Angra do Heroísmo, pp 5–8

    Google Scholar 

  • Gilmore AE (1968) Phycomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia 39:87–105

    Article  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agr Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Gosling P, Proctor M, Jones J, Bending GD (2014) Distribution and diversity of Paraglomus spp. in tilled agricultural soils. Mycorrhiza 24:1–11

    Article  PubMed  Google Scholar 

  • Hart MM, Reader RJ (2002) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fert Soils 36:357–366

    Article  Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480

    Article  CAS  PubMed  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:1392146

    Article  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176

    Article  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176

    Article  CAS  Google Scholar 

  • Jefwa JM, Sinclair R, Maghembe JA (2006) Diversity of glomale mycorrhizal fungi in maize/sesbania intercrops and maize monocrop systems in southern Malawi. Agrofor Syst 67:107–114

    Article  Google Scholar 

  • Jefwa JM, Mung’atu J, Okoth P, Muya E, Roimen H, Njuguini S (2009) Influence of land use types on occurrence of arbuscular mycorrhizal fungi in the high altitude regions of Mt. Kenya. Trop Subtrop Agroecosyst 11:277–290

    Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae. Ecol Appl 3:749–757

    Article  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65–79

    Article  CAS  Google Scholar 

  • Khanam D, Mridha MAU, Solaiman ARM, Hossain T (2006) Effect of edaphic factors on root colonization and spore population of arbuscular mycorrhizal fungi. Bull Inst Agr Kyushu Univ 29:97–104

    Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: One PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Kueffer C, Daehler CC, Torres-Santana CW, Lavergne C, Meyer J, Otto R, Silva L (2010) A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol Evol Syst 12:145–161

    Article  Google Scholar 

  • Lee J-E, Eom A-H (2009) Effect of organic farming on spore diversity of Arbuscular Mycorrhizal fungi and Glomalin in soil. Mycobiology 37:272–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li LF, Zhang Y, Zhao ZW (2007) Arbuscular mycorrhizal colonization and spore density across different land-use types in a hot and arid ecosystem, Southwest China. J Plant Nutr Soil Sci 170:419–425

    Article  CAS  Google Scholar 

  • Liu Y, Mao L, He X, Cheng G, Ma X, An L, Feng H (2012) Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice. Mycorrhiza 22:31–39

    Article  CAS  PubMed  Google Scholar 

  • Martins AMF (1993) The Azores - Westernmost Europe: Where evolution can be caught red-handed. Bull Mus Mun Funchal 2:181–198

    Google Scholar 

  • Mathimaran M, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in kenyan ferrasol. Agr Ecosyst Environ 119:22-32

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Minitab (2000) Statistical software. Version 13. Minitab Inc.

  • Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 20:483–496

    Article  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 2816–2824

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, Van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, de Silva GA (2011a) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed Central  PubMed  Google Scholar 

  • Oehl F, de Silva GA, Goto BT, Sieverding E (2011b) New recombinations in Glomeromycota. Mycotaxon 117:429–434

    Article  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Soc. of Agronomy, Madison, Wisconsin, USA, pp 403–427

    Google Scholar 

  • Pinheiro JF (1990) Estudo dos principais solos da Ilha Terceira (Açores). Dissertation, University of Azores

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:3932398

    Article  Google Scholar 

  • Querejeta JI, Allen MF, Alguacil MM, Roldan A (2007) Plant isotopic composition provides insight into mechanisms underlying growth stimulation by AM fungi in a semiarid environment. Funct Plant Biol 34:6832691

    Google Scholar 

  • Redecker D, Schüβler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. doi:10.1007/s00572-013-0486-y

    PubMed  Google Scholar 

  • Rodriguez-Echeverria S, Hol WHG, Freitas H, Eason WR, Cook R (2007) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: Spore abundance and root colonisation in six locations of the European coast. Eur J Soil Biol 44:30–36

    Article  Google Scholar 

  • Sanders FE (1975) The effect of foliar-applied phosphate on the mycorrhizal infections of onion roots. In: Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 261–276

    Google Scholar 

  • Schalamuk S, Velazquez S, Chidichimo H, Cabello M (2006) Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat effects of tillage. Mycologia 98:16–22

    Article  CAS  PubMed  Google Scholar 

  • Schübler A, Walker C. (2010) The Glomeromycota: a species list with new families and genera. Edinburgh & Kew, UK: The Royal Botanic Garden; Munich, Germany: Botanische Staatssammlung Munich; Oregon, USA: Oregon State University. URL: http://www.amf-phylogeny.com.

  • Schülbler A, Schwarzott D, Walker C (2001) A new fungal phylum, The Glomeromycota: Phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Seaby RMH, Henderson PA, Prendergast JR (2004) Community Analysis Package. Version 4.01. Pisces Conservation Ltd

  • Sieverding E (1989) Ecology of VAM fungi in tropical agrosystems. Agr Ecosyst Environ 29:369–390

    Article  Google Scholar 

  • Silva L, Smith CW (2006) A quantitative approach to the study of non-indigenous plants: An example from the Azores Archipelago. Biodivers Conserv 15:1661–1679

    Article  Google Scholar 

  • Sjöberg J, Persson P, Mårtensson A, Mattsson L, Adholeya A, Alström S (2004) Occurrence of Glomeromycota spores and some arbuscular mycorrhiza fungal species in arable fields in Sweden. Acta Agr Scand B-S P 54:202–212

    Google Scholar 

  • Sjögren E (1990) Bryophyte flora and vegetation on the island of Graciosa (Azores), with remarks on floristic diversity of the Azorean islands. Arquipélago 8:63–96

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, New York, p 787

    Google Scholar 

  • Titus JH, Leps J (2000) The response of arbuscular mycorrhizae to fertilization, mowing and removal of dominant species in a diverse oligotrophic wet meadow. Am J Bot 87:392–401

    Article  CAS  PubMed  Google Scholar 

  • van der Gast CJ, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13:241–249

    Article  PubMed  Google Scholar 

  • Verbruggen E, Röling WFM, Gamper HA, Kowalchuk GA, Verhoef HA, van der Heijden MGA (2010) Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol 186:968–979

    Article  CAS  PubMed  Google Scholar 

  • Walker C (1992) Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales) - a possible way forward. Agronomie 12:887–897

    Article  Google Scholar 

  • Walker C, Mize CW, McNabb HS (1982) Populations of endogonaceous fungi at two locations in central Iowa. Can J Bot 60:2518–2529

    Article  Google Scholar 

  • Wang G, Stribley D, Tinker P, Walker C (1985) Soil pH and vesicular-arbuscular mycorrhiza. In: Fitter AH (ed) Ecological Interactions in the soil environment: Plants. Microbes and animals - British ecological society special symposium, Blackwell, Oxford, pp 219–224

    Google Scholar 

  • Wang YY, Vestberg M, Walker C, Hurme T, Zhang X, Lindström K (2008) Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18:59–68

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Vasco Nunes of Regional Institute of Agrarian Planning for help with the field work, and for providing the aerial photographs. Many thanks to Clara Gaspar of Science Center for her most useful help with statistical analysis and suggestions, and also to Reinaldo Pimentel of Azorean Biodiversity Group (CITA-A) for providing the image software for the paper. We thank the soil laboratory and the chemistry laboratory of the University of the Azores for use of the facilities for spore extraction and chemical analyses of the soil. Many thanks to Raúl Paim for allowing the development of this study in his intensive pastures. CD Melo is indebted to Mery Jaizme-Vega of the Instituto Canario de Investigaciones Agrarias, for the training on extraction methods of AMF species. We gratefully acknowledge financial support for this research from the Portuguese Fundação para a Ciência e a Tecnologia (SFRH/BD/18355/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina Drumonde Melo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, C.D., Walker, C., Rodríguez-Echeverría, S. et al. Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores). Symbiosis 64, 73–85 (2014). https://doi.org/10.1007/s13199-014-0303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0303-1

Keywords

Navigation