Skip to main content
Log in

‘Kodo poisoning’: cause, science and management

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Many mycotoxigenic fungi infect the food crops and affect the quality of the produce due to production of mycotoxins. Kodo millet is one of the important minor millets cultivated in India, mostly confined to marginal lands and tribal regions but has high yield potential under good management. The grains are nutritious and have anti-oxidant properties besides having many medicinal properties. However, the consumption is often hindered by the condition called ‘kodo poisoning’ resulting from fungal contamination producing cyclopiazonic acid, a toxic fungal secondary metabolite. An attempt has been made here to review the limited information available on kodo poisoning, its causes and effects, and proposed management practices by which the contamination can be checked. Further research efforts are essential for identifying sources of natural resistance to fungal metabolite, induction of host resistance through antimicrobial compounds or microbial antagonism to the pathogens to achieve cleaner grains from this crop even under high humid and rainy conditions. By effective adoption of both pre- and post-harvest management the kodo millet grains can be made safe for human consumption and can be popularized as a nutritious grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Ostry et al. 2018)

Similar content being viewed by others

References

  • Annor GA, Marcone M, Bertoft E, Seetharaman K (2013) In-vitro starch digestibility and expected glycemic index of Kodo millet (Paspalum scrobiculatum) as affected by starch-protein-lipid Interactions. Cereal Chem 90(3):211–217

    Article  CAS  Google Scholar 

  • Ansari AA, Shrivastava AK (1991) Susceptibility of minor millets to Aspergillus flavus for aflatoxin production. Indian Phytopath 44:533–534

    CAS  Google Scholar 

  • Ansari P, Haeubl G (2016) Determination of cyclopiazonic acid in white mould cheese by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) using a novel internal standard. Food Chem 211:978–982

    Article  CAS  PubMed  Google Scholar 

  • Antony M, Shukla Y, Janardhanan KK (2003) Potential risk of acute hepatotoxicity of kodo poisoning due to exposure to cyclopiazonic acid. J Ethnopharmacol 87(2–3):211–214

    Article  CAS  PubMed  Google Scholar 

  • Aresta A, Cioffi N, Palmisano F, Zambonin CG (2003) Simultaneous determination of ochratoxin A and cyclopiazonic, mycophenolic, and tenuazonic acids in cornflakes by solid phase microextraction coupled to high-performance liquid chromatography. J Agric Food Chem 51:5232–5237

    Article  CAS  PubMed  Google Scholar 

  • Ayyangar GNR, Panduranga Rao V (1934) Studies in Paspalum scrobiculatum L.—the kodra millet. Madras Agric J 22:419–425

    Google Scholar 

  • Bars JLE (1979) Cyclopiazonic acid production by Penicillium camemberti Thom. and natural occurrence of this mycotoxin in cheese. Appl Environ Microb 38(6):1052–1055

    Article  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16(3):497–516. https://doi.org/10.1128/CMR.16.3.497-516.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat BV, Dayakar Rao B, Tonapi VA (eds) (2018) The story of millets, Karnataka State Department of Agriculture, Benguluru, India & ICAR-Indian Institute of Millets Research, Hyderabad, India. 58

  • Bhide NK (1962) Pharmacological study and fractionation of Paspalum scrobiculatum extract. Br J Pharmacol Chemother 18(1):7–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhide NK, Aimen RA (1959) Pharmacology of a tranquillizing principle in Paspalum scrobiculatum grain. Nature 183(4677):1735–1736

    Article  CAS  PubMed  Google Scholar 

  • Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, García FA, Kemper AR, Krist AH, Kurth AE, Landefeld CS et al (2017) Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement. J Am Med Assoc 317(2):183–189

    Article  Google Scholar 

  • Bradburn N, Coker RD, Blunden G (1994) The aetiology of turkey ‘X’ disease. Phytochemistry 35(3):817

    Article  CAS  Google Scholar 

  • Burdock GA, Flamm WG (2000) Safety assessment of the mycotoxin cyclopiazonic acid. Int J Toxicol 19:195–218

    Article  CAS  Google Scholar 

  • Chandrasekara A, Shahidi F (2012) Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J Funct Food 4(1):226–237

    Article  CAS  Google Scholar 

  • Chang PK, Ehrlich KC, Fujii I (2009) Cyclopiazonic acid biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins (basel) 1:74–99

    Article  CAS  Google Scholar 

  • Chang-Yen I, Bidasee K (1990) Improved spectrophotometric determination of cyclopiazonic acid in poultry feed and corn. J Assoc off Ana Chem 73(2):257–259

    CAS  Google Scholar 

  • Chevers N (1870) A manual of medical jurisprudence for India, including the outline of a history of crime against the person in India. Thacker, Spink & Co, Calcutta, India, p 861

    Google Scholar 

  • Choudhary AK, Kumari P (2010) Management of mycotoxin contamination in preharvest and post harvest crops: present status and future prospects. J Phytology 46(6):1435–1437

    Google Scholar 

  • Cole RJ, Dorner JW (1999) Biological control of aflatoxin and cyclopiazonic acid contamination of peanuts. JSM Mycotoxins Suppl 2:70–73

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microb 71(9):4951–4959

    Article  CAS  Google Scholar 

  • Das IK, Audilakshmi S, Patil JV (2012) Fusarium grain mold: the major component of grain mold disease complex in sorghum (Sorghum bicolor L. Moench). Eur J Plant Sci Biotech 6:45–55

    Google Scholar 

  • de Wet JMJ, Prasada Rao KE, Mengesha MH, Brink DE (1983) Diversity in kodo millet, Paspalum scrobiculatum. Econ Bot 37:159–163

    Article  Google Scholar 

  • Deshpande SS, Mohapatra D, Tripathi MK, Sadvatha RH (2015) Kodo millet: nutritional value and utilization in Indian foods. J Grain Process Storage 2(2):16–23

    Google Scholar 

  • Dorner JW (2002) Recent advances in analytical methodology for cyclopiazonic acid. Mycotoxins and food safety. Springer, Boston, MA, pp 107–116

    Chapter  Google Scholar 

  • Dorner JW, Cole RJ, Lomax LG, Gosser HS, Diener UL (1983) Cyclopiazonic acid production by Aspergillus flavus and its effects on broiler chickens. Appl Environ Microb 46:1435–1437

    Article  CAS  Google Scholar 

  • El-Banna AA, Pitt JI, Leistner L (1987) Production of mycotoxins by Penicillium species. Syst Appl Microbiol 1:42–46

    Article  Google Scholar 

  • Fasiha R, Basappa SC, Murthy VS (1979) Destruction of aflatoxin in rice by different cooking methods. J Food Sci Tech 16(3):111–112

    Google Scholar 

  • Frisvad JC (1989) The connection between the Penicillia and Aspergilli and mycotoxins with special emphasis on misidentified isolates. Arch Environ Contam Toxicol 18:452–467

    Article  CAS  PubMed  Google Scholar 

  • Galinato MI, Moody K, Piggin CM (1999) Upland rice weeds of South and Southeast Asia. International Rice Research Institute, Manila, Philippines, p 154

    Google Scholar 

  • Gallagher RT, Richard JL, Stahr HM, Cole RJ (1978) Cyclopiazonic acid production by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Mycopathologia 66(1–2):31–36

    Article  CAS  PubMed  Google Scholar 

  • Gilani GS, Cockell KA, Sepehr E (2005) Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J AOAC Int 88(3):967–987

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves A, Gkrillas A, Dorne JL, Dall’Asta C, Palumbo R, Lima N, Battilani P, Venâncio A, Giorni P (2019) Pre-and postharvest strategies to minimize mycotoxin contamination in the rice food chain. Compr Rev Food Sci F 18(2):441–454

    Article  Google Scholar 

  • Hahnau S, Weiler EW (1983) Monoclonal antibodies for the enzyme immunoassay of the mycotoxin cyclopiazonic acid. J Agric Food Chem 41:1076–1080

    Article  Google Scholar 

  • Hariprasanna K (2015) Genetic improvement in kodo millet. In: Tonapi VA, Patil JV (eds) Millets: ensuring climate resilience and nutritional security. Daya Publishing House, New Delhi, India, pp 305–317

    Google Scholar 

  • Hariprasanna K (2017) Kodo millet, Paspalum scrobiculatum L. In: Patil JV (ed) Millets and sorghum: biology and genetic improvement. John Wiley & Sons, UK, pp 199–225

    Chapter  Google Scholar 

  • Harrison J (1971) Food moulds and their toxicity. Trop Sci 13:57–63

    Google Scholar 

  • Hayashi Y, Yoshizawa T (2005) Analysis of cyclopiazonic acid in corn and rice by a newly developed method. Food Chem 93(2):215–221

    Article  CAS  Google Scholar 

  • Heaney RK, Fenwick GR (1995) Natural toxins and protective factors in Brassica species, including rapeseed. Nat Toxins 3(4):233–237

    Article  CAS  PubMed  Google Scholar 

  • Hegde BR, Gowda BKL (1989) Cropping systems and production technology for small millets in India. In: Seetharam A, Riley KW, Harinarayana G (eds) Small millets in global agriculture. Oxford & IBH Publishing Co., New Delhi, pp 209–236

    Google Scholar 

  • Hegde PS, Chandra TS (2005) ESR spectroscopic study reveals higher free radical quenching potential in kodo millet (Paspalum scrobiculatum) compared to other millets. Food Chem 92(1):177–182

    Article  CAS  Google Scholar 

  • Hell K, Fandohan P, Bandyopadhyay R, Kiewnick S, Sikora R, Cotty PJ (2008) Pre- and postharvest management of aflatoxin in maize: an African perspective. In: Leslie JF, Bandyopadhyay R, Viscont A (eds) Mycotoxins: detection methods, management, public health and agricultural trade. CAB International, Wallingford, pp 219–229

    Chapter  Google Scholar 

  • Heperkan D, Somuncuoglu S, Karbancioglu-Güler F, Mecik N (2012) Natural contamination of cyclopiazonic acid in dried figs and co-occurrence of aflatoxin. Food Control 23(1):82–86

    Article  CAS  Google Scholar 

  • Hermansen K, Frisvad JC, Emborg C, Hansen J (1984) Cyclopiazonic acid production by submerged cultures of Penicillium and Aspergillus strains. FEMS Microbiol Let 21(2):253–261

    Article  CAS  Google Scholar 

  • Heuzé V, Tran G, Giger-Reverdin S (2015) Scrobic (Paspalum scrobiculatum) forage and grain. In: Feedipedia, a programme by INRA, CIRAD, AFZ and FAO; https://feedipedia.org/node/401

  • Holzapfel CW (1968) The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium Westling. Tetrahedron 24(5):2101–2119

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel CW, Wilkins DC (1971) On the biosynthesis of cyclopiazonic acid. Phytochemistry 10:351–358

    Article  CAS  Google Scholar 

  • Hossain Z, Busman M, Maragos CM (2019) Immunoassay utilizing imaging surface plasmon resonance for the detection of cyclopiazonic acid (CPA) in maize and cheese. Anal Bioanal Chem 411(16):3543–3552

    Article  CAS  PubMed  Google Scholar 

  • Hunt BJ, Taylor AO (1976) Hydrogen cyanide production by field grown sorghums. New Zeal J Exp Agr 4(2):191–194

    Article  CAS  Google Scholar 

  • Kabak B (2009) The fate of mycotoxins during thermal food processing. J Sci Food Agr 89(4):549–554

    Article  CAS  Google Scholar 

  • Kajale MD (1974) Ancient grains from India. Bull Deccan College Post-Grad Res Inst 34(1/4):55–74

    Google Scholar 

  • Karthika N, Kalpana R (2017) HCN content and forage yield of multi-cut forage sorghum under different organic manures and nitrogen levels. Chem Sci Rev Lett 6:1659–1663

    CAS  Google Scholar 

  • Khan M, Doohan FM (2009) Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biol Control 48(1):42–47

    Article  Google Scholar 

  • Khan M, Fischer S, Egan D, Doohan F (2006) Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology 96(4):386–394

    Article  CAS  PubMed  Google Scholar 

  • Knees SG, Gupta AK (2013) Paspalum scrobiculatum, The IUCN Red List of Threatened Species 2013; e.T168983A1260955. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T168983A1260955.en

  • Lansden JA (1984) Liquid chromatographic analysis system for cyclopiazonic acid in peanuts. J Assoc off Anal Chem 67(4):728–731

    CAS  PubMed  Google Scholar 

  • Lansden JA (1986) Determination of cyclopiazonic acid in peanuts and corn by thin layer chromatography. J Assoc off Anal Chem 69(6):964–966

    CAS  PubMed  Google Scholar 

  • Lansden JA, Davidson JI (1983) Occurrence of cyclopiazonic acid in peanuts. Appl Environ Microbiol 45(3):766–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie JF, Bandyopadhyay R, Visconti A (eds) (2008) Mycotoxins: detection methods, management, public health and agricultural trade. CAB International, Wallingford, p 480

    Google Scholar 

  • Liu X, Walsh CT (2009) Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a Reductase-like R Domain in Cyclopiazonate Synthetase that forms and releases cyclo-acetoacetyl-l-tryptophan. Biochemistry 48(36):8746–8757

    Article  CAS  PubMed  Google Scholar 

  • Lomax LG, Cole RJ, Dorner JW (1984) The toxicity of cyclopiazonic acid in weaned pigs. Vet Pathol 21(4):418–424

    Article  CAS  PubMed  Google Scholar 

  • Longvah T, Ananthan R, Bhaskarachary K, Venkaiah K (eds) (2017) Indian food composition tables. National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India, p 505

    Google Scholar 

  • Luk KC, Kobbe B, Townsend JM (1977) Production of cyclopiazonic acid by Aspergillus flavus Link. Appl Environ Microbiol 33(1):211–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malathi D, Thilagavathi T, Sindhumathi G (2012) Traditional Recipes from Kodo millet. Tamil Nadu Agricultural University, Coimbatore, India, p 14

    Google Scholar 

  • Manna M, Kim KD (2017) Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology 45(4):240–254

    Article  Google Scholar 

  • Maragos CM, Sieve KK, Bobell J (2017) Detection of cyclopiazonic acid (CPA) in maize by immunoassay. Mycotoxin Res 33(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G (2012) Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158(1):98–106

    Article  CAS  PubMed  Google Scholar 

  • Matsudo T, Sasaki M (1995) Simple determination of cyclopiazonic acid. Biosci Biotech Bioch 59(3):355–357

    Article  CAS  Google Scholar 

  • McGrath RM, Steyn PS, Ferreira NP, Neethling DC (1976) Biosynthesis of cyclopiazonic acids in Penicillium cyclopium: the isolation of dimethylallylpyrophosphate: cyclo-acetoacetyltryptophanyl dimethylallyltransferase. Bioorg Chem 4:11–23

    Article  Google Scholar 

  • Moldes-Anaya AS, Eriksen GS, Skaar I, Rundberget T (2009) Determination of cyclopiazonic acid in food and feeds by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216:3812–3818

    Article  CAS  PubMed  Google Scholar 

  • Munkvold GP (2003) Cultural and genetic approaches to managing mycotoxins in maize. Ann Rev Phytopathol 41(1):99–116

    Article  CAS  Google Scholar 

  • Neme K, Mohammed A (2017) Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. Food Control 78:412–425

    Article  CAS  Google Scholar 

  • Ostry V, Toman J, Grosse Y, Malir F (2018) Cyclopiazonic acid: 50th anniversary of its discovery. World Mycotoxin J 11(1):135–148

    Article  CAS  Google Scholar 

  • Pall BS, Jain AC, Singh SP (1980) Diseases of lesser millets. JNKVV, Jabalpur, Madhya Pradesh, India, p 66

    Google Scholar 

  • Pandey RK, Kumar D, Jadhav KM (2011) Assessment of determinants for reducing HCN content in Sorghum used for ruminant in Gujarat, India. Livest Res Rural Dev 23:66

    Google Scholar 

  • Prasongsidh BC, Kailasapathy K, Skurray GR, Bryden WL (1998) Analysis of cyclopiazonic acid in milk by capillary electrophoresis. Food Chem 61:515–519

    Article  CAS  Google Scholar 

  • Pushpa K, Madhu P, Venkatesh Bhat B (2019) Estimation of HCN content in sorghum under irrigated and stressed conditions. J Pharmacogn Phytochem 8(3):2583–2585

    CAS  Google Scholar 

  • Rao BL, Husain A (1985) Presence of cyclopiazonic acid in kodo millet (Paspalum scrobiculatum) causing ‘kodua poisoning’ in man and its production by associated fungi. Mycopathologia 89(3):177–180

    Article  CAS  Google Scholar 

  • Rose LJ, Okoth S, Flett BC, van Rensburg BJ, Viljoen A (2018) Pre-harvest management strategies and their impact on Mycotoxigenic fungi and associated Mycotoxins—Impact and Management Strategies. IntechOpen, London

    Google Scholar 

  • Saito K, Baba N, Sasaki M, Watanabe M, Ito R, Kato M, Ishii R, Hosoe T (2015) Development of analytical method for cyclopiazonic acid in liquid seasoning by LC/UV(PDA) and LC/TOF-MS, and its validation study. Jpn J Food Chem Safety 22(3):163–169

    CAS  Google Scholar 

  • Swarup A (1922) Acute “Kodon” Poisoning. Indian Med Gazette 57(7):257

    Google Scholar 

  • Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U (2016) Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270

    Article  CAS  PubMed  Google Scholar 

  • van Egmond HP (2004) Natural toxins: risks, regulations and the analytical situation in Europe. Anal Bioanal Chem 378(5):1152–1160

    Article  PubMed  CAS  Google Scholar 

  • Villers P (2014) Aflatoxins and safe storage. Front Microbiol 5:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinokurova NG, Ivanushkina NE, Khmel’nitskaya II, Arinbasarov MU (2007) Synthesis of α-cyclopiazonic acid by fungi of the genus Aspergillus. Appl Biochem Microbiol 43(4):435

    Article  CAS  Google Scholar 

  • Vulić A, Lešić T, Kudumija N, Zadravec M, Kiš M, Vahčić N, Pleadin J (2021) The development of LC-MS/MS method of determination of cyclopiazonic acid in dry-fermented meat products. Food Control 123:107814

    Article  CAS  Google Scholar 

  • Yadava HS, Jain AK (2006) Advances in Kodo millet research. DIPA, Indian Council of Agricultural Research, New Delhi, India, p 95

    Google Scholar 

  • Yu W, Chu FS (1998) Improved direct competitive enzyme-linked immunosorbent assay for cyclopiazonic acid in corn, peanuts, and mixed feed. J Agric Food Chem 46:1012–1017

    Article  CAS  Google Scholar 

  • Zorzete P, Baquião AC, Atayde DD, Reis TA, Gonçalez E, Corrêa B (2013) Mycobiota, aflatoxins and cyclopiazonic acid in stored peanut cultivars. Food Res Int 52:380–386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Indian Council of Agricultural Research (ICAR), New Delhi, and ICAR-Indian Institute of Millets Research (ICAR-IIMR), Hyderabad.

Funding

The article has not been supported by any special grant.

Author information

Authors and Affiliations

Authors

Contributions

DC performed literature search and prepared draft. HK reviewed the first draft and critically revised the final version. IKD, JJ and RCV provided inputs in their respective areas. VAT conceived the idea. Rest of the authors commented on the draft.

Corresponding author

Correspondence to K. Hariprasanna.

Ethics declarations

Conflict of interest

No conflict of interest with any agency/researcher.

Consent for publication

All authors have agreed for its publication in JFST.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, C., Hariprasanna, K., Das, I.K. et al. ‘Kodo poisoning’: cause, science and management. J Food Sci Technol 59, 2517–2526 (2022). https://doi.org/10.1007/s13197-021-05141-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-021-05141-1

Keywords

Navigation