Skip to main content
Log in

The connection between the Penicillia and Aspergilli and mycotoxins with special emphasis on misidentified isolates

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Species ofPenicillium andAspergillus are the most potent mycotoxin producers, but the connection between species and profiles of mycotoxins has been obscured by many misidentifications of fungal isolates, especially inPenicillium. Available producers of known mycotoxins in the two important genera were examined concerning identity and production of secondary metabolites using thin-layer chromatography and high performance liquid chromatography with diode array detection. 152 isolates ofPenicillium were reclassified, leaving the connection between species and mycotoxin profiles much clearer in this genus. Earlier data on mycotoxin production by different taxa were confirmed by analyzing several isolates of each taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anslow WK, Breen J, Raistrick H (1940) Studies in the biochemistry of microorganisms 64. Emodic acid (4:5:7-trihydroxyanthraquinone-2-carboxylic acid) and w-hydroxyemodin (4:5:7-trihydroxy-2-(hydroxymethyl)-anthraquinone), metabolic products ofPennicillium cyclopium Westling. Biochem J 34:159–165

    Google Scholar 

  • Betina V, Nemec P, Kutková M, Balan J, Kovác S (1964) The isolation of citrinin fromPenicillium notatum Westling. Chem Cvesti 18:128–139

    Google Scholar 

  • Betina V, Nemec P, Kovác S, Kjaer A, Shapiro RH (1965) The identity of cyanein and brefeldin A. Acta Chem Scand 19:579

    Google Scholar 

  • Betina V, Fuska J, Kjaer A, Kutkova M, Nemec P, Shapiro RH (1966) Production of cyanein byPenicillium simplicissimum. J Antibiotics, Ser A (Tokyo) 19:115–117

    Google Scholar 

  • Betina V (ed) (1984) Mycotoxins. Production, isolation, separation and purification. Elsevier, Amsterdam, 528 pp

    Google Scholar 

  • Betina V, Binowská Z (1979) Diphasic production of citrinin byPenicillium janthinellum and its regulation. Biológia (Bratislava) 34:461–469

    Google Scholar 

  • Binder W (1955) The formation of antibiotic substance in molds of the Camembert, Gorgonzola and Roquefort types of cheese. Milschwiss Ber 4:88–129

    Google Scholar 

  • Birch AJ, Kocor M (1960) Studies in relation to biosynthesis Part XXII. Palitantin and cyclopaldic acid. J Chem Soc 1960:866–871

    Google Scholar 

  • Borodin N, Philpot FJ, Florey HW (1947) An antibiotic fromPenicillium tardum. Brit J Exp Pathol 28:31–34

    Google Scholar 

  • Bracken A, Raistrick H (1947) Studies in the biochemistry of microorganisms 75. Dehydrocarolic acid, a metabolic product ofPenicillium cinerascens Biorge. Biochem J 41:569–575

    Google Scholar 

  • Brookes D, Kidd BK, Turner WB (1963) Avenaciolide, an antifungal lactone fromAspergillus avenaceus. J Chem Soc 1963:5385–5391

    Google Scholar 

  • Chaplan P, Thomas R (1960) Studies in the biosynthesis of fungal metabolites. The biosynthesis of palitantin. Biochem J 77:91–96

    PubMed  Google Scholar 

  • Chelkowski J, Samson RA, Wiewiórowska M, Golinski P (1987) Ochratoxin A formation by isolated dtrains of the conidial stage ofAspergillus glaucus Link ex Gray (=Eurotium herbariorum (Wiggers) Link ex Gray) from cereal grains. Nahrung 31:267–269

    PubMed  Google Scholar 

  • Ciegler A (1969) A tremorgenic toxin fromPenicillium palitans. Appl Microbiol 18:128–129

    PubMed  Google Scholar 

  • Ciegler A, Kurtzman CP (1970) Penicillic acid production by blue-eye fungi on various agricultural commodities. Appl Microbiol 20:761–764

    PubMed  Google Scholar 

  • Ciegler A, Fennell DI, Mintzlaff H-J, Leistner L (1972) Ochratoxin synthesisby Penicillium species. Naturwissenschaften 59:365–366

    PubMed  Google Scholar 

  • Ciegler A, Fennell DI, Sansing GA, Detroy RW, Bennett GA (1973) Mycotoxin producing strains ofPenicillium viridicatum: classification into subgroups. Appl Microbiol 26:271–278

    PubMed  Google Scholar 

  • Cole, RJ, Cox RH (1981) Handbook for toxic fungal metabolites. Academic Press, New York, 874 pp

    Google Scholar 

  • Cole RJ, Dorner JW, Cox RH, Hill RA, Cluter HG, Wells JM (1981) Isolation of citreoviridin fromPenicillium charlesii cultures and molded pecan fragments. Appl Environ Microbiol 42:677–681

    Google Scholar 

  • Cruickshank RH, Pitt JI (1987) Identification of species inPenicillium subgenusPenicillium by enzyme electrophoresis. Mycologia 79:614–620

    Google Scholar 

  • Curtin TP, Fitzgerald G, Reilly J (1940) Production of phoenicine on synthetic media. Biochem J 34:1605–1610

    Google Scholar 

  • Debeaupuis JP, Lafont P (1978) Fumitoxins, new mycotoxins fromAspergillus fumigatus Fres. Appl Environ Microbiol 36:8–10

    PubMed  Google Scholar 

  • Di Menna ME, Mantle PG (1978) The role of Penicillia in ryegrass staggers. Res Veterin Sci 24:347–351

    Google Scholar 

  • Dix DT, Martin J, Moppett CE (1972) Molecular structure of the metabolite lanosulin. J Chem Soc Chem Commun 1972:1168–1169

    Google Scholar 

  • Domsch KH, Gams W, Anderson T-M (1980) Compendium of soil fungi. Academic Press, New York, 859 + 405 pp

    Google Scholar 

  • Dorner JW, Cole RJ, Hill R, Wicklow DT (1980)Penicillium mbrum andPenicillium biforme, new sources of rugulovasine A and B. Appl Environ Microbiol 40:685–687

    PubMed  Google Scholar 

  • El-Banna AA, Pitt JI, Leistner L (1987) Production of mycotoxins byPenicillium species. System Appl Microbiol 10:42–46

    Google Scholar 

  • Engel G, Teuber M (1978) Simple aid in the identification ofPenicillium roquefoni Thorn. Growth in acetic acid. Eur J Appl Microbiol 6:107–111

    Google Scholar 

  • Fayos J, Lokensgard D, Clardy J, Cole RJ, Kirksey JW (1974) Structure of verruculogen, a tremor producing peroxide fromPenicillium vermculosum. J Amer Chem Soc 96:6785–6787

    Google Scholar 

  • Filtenborg O, Frisvad JC, Svendsen JA (1983) Simple screening method for molds producing intracellular mycotoxins in pure cultures. Appl Environ Microbiol 45:581–585

    PubMed  Google Scholar 

  • Frank HK (1972) Zweifel über das Vorkommen von Aflatoxin bei der GattungPenicillium. Z Lebensm Unters-Forsch 150:151–153

    Google Scholar 

  • Frisvad JC (1985a) Profiles of primary and secondary metabolites of value in classification ofPenicillium viridicatum and related species. In: Samson & Pitt (1985) pp. 311–325

  • — (1985b) Creatine sucrose agar, a differential medium for mycotoxin producing terverticillatePenicillium species. Lett Appl Microbiol 1:109–113

    Google Scholar 

  • - (1985c) Classification of asymmetric penicillia using expressions of differentiation. In: Samson & Pitt (1985) pp. 327–333

  • - (1985d) Secondary metabolites as an aid toEmericella classification. In: Samson & Pitt (1985) pp. 437–443

  • — (1986) Taxonomic approaches to mycotoxin identification. In Cole RJ (ed) Modern methods in the analysis and structural elucidation of mycotoxins. Academic Press, New York, London, pp 415–457

    Google Scholar 

  • Frisvad JC, Filtenborg O (1983) Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol 46:1301–1310

    PubMed  Google Scholar 

  • Frisvad JC, Thrane U (1987) Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode array detection). J Chromatogr 404:195–214

    PubMed  Google Scholar 

  • Frisvad JC, Filtenborg O, Wicklow DT (1987) Terverticillate penicillia isolated from underground seed caches and cheek pouches of banner-tailed kangaroo rats (Dipodomys spectabilis). Can J Bot 65:765–773

    Google Scholar 

  • Fujimoto Y, Kamiya M, Tsunoda H, Ohtsubo K, Tatsuno T (1980) Recherch toxicologique des substances metabolique dePenicillium carneo-lutescens. Chem Pharm Bull 28:1062–1066

    PubMed  Google Scholar 

  • Fujimoto Y, Yokoyama E, Morooka N, Tsunoda H, Tatsuno T (1983) Studies on the metabolite ofPenicillium atramentosum. Proc Jap Assoc Mycotoxicol 17:52–54

    Google Scholar 

  • Gallagher RT, Latch GCM (1977) Production of tremorgenic mycotoxins verruculogen and fumitremorgin B byPenicillium piscarium Westling. Appl Environ Microbiol 33:730–731

    Google Scholar 

  • Giesecke PR, Lanigan GW, Payne AL (1979) Fungal tremorgens associated with ryegrass staggers in South Australia. Austr Vet J 55:444

    Google Scholar 

  • Hald B, Christensen DH, Krogh P (1983) Natural occurrence of the mycotoxin viomellein in barley and the associated quinone-producing penicillia. Appl Environ Microbiol 46:1311–1317

    PubMed  Google Scholar 

  • Harri E, Loeffler W, Sigg HP, Stähelin H, Tamm C (1963) Über die Isolierung neuer Stoffwechselprodukte ausPenicillium brefeldianum Dodge. Helv Chim Acta 46:1235–1246

    Google Scholar 

  • Hermansen K, Frisvad JC, Emborg C, Hansen J (1984) Cyclopiazonic acid production by submerged cultures ofPenicillium andAspergillus strains. FEMS Microbiol Lett 21:253–261

    Google Scholar 

  • Hirata Y (1947) On the products of mould. I. Poisonous products from mouldy rice (Part I). Extraction. J Chem Soc Japan 68:63 + 74

    Google Scholar 

  • Holzapfel CW (1968) The isolation and structure of cyclopiazonic acid, a toxic product ofPenicillium cyclopium Westling. Tetrahedron 24:2101–2119

    PubMed  Google Scholar 

  • Horie Y, Maebayashi Y, Yamazaki M (1985) Survey of productivity of tremorgenic mycotoxin, verruculogen byEupenicillium spp. Proc Jap Assoc Mycotoxicol 22:35–37

    Google Scholar 

  • Hutchinson RD, Steyn PS, van Rensburg SJ (1973) Viridicatumtoxin, a new mycotoxin fromPenicillium viridicatum Westling. Toxicol Appl Pharmacol 24:507–509

    PubMed  Google Scholar 

  • Karo M, Hadlok RM (1982) Investigations on sterigmatocystin production by fungi of the genusEurotium. In: Krogh P (ed) Proc Int IUPAC Symp Mycotoxins Phycotoxins, 5th, Techn. Univ. Vienna, Vienna, pp 178–181

    Google Scholar 

  • Kocur M (1975) Czechoslovak collection of microorganisms. Catalogue of cultures 3. ed, JE Purkyne University, Brno, 628 pp

    Google Scholar 

  • Kozlovsky AG, Solovieva TF, Reschetilova TA, Skruabin GK (1981) Biosynthesis of roquefortine and 3,12-dihydroroquefortine by the culturePenicillium farinas um. Experientia 37:472

    Google Scholar 

  • Krogh P (1974) Mycotoxic nephropathy. In: Purchase IFH (ed) Mycotoxins. Elsevier, Amsterdam, pp. 419–428

    Google Scholar 

  • Lafont P, Lafont J (1970) Production de nidulotoxin par des aspergilli apparteneant a diverse especes. Experientia 26:807–808

    PubMed  Google Scholar 

  • Leistner L, Eckardt C (1979) Vorkommen toxinogener Penicillien bei Fleischerzeugnisse. Fleischwirtschaft 59:1892–1896

    Google Scholar 

  • Leistner L, Pitt JI (1977) MiscellaneousPenicillium toxins. In: Rodricks JV, Hesseltine CV, Mehlmann MA (eds) Mycotoxins in human and animal health. Pathotox, Park Forest South, pp 639–653

    Google Scholar 

  • Lillehøj EG, Göransson B (1980) Occurrence of ochratoxin- and citrinin-producing fungi on developing danish barley grain. Acta Path Microbiol Scand Sect B88:133–137

    Google Scholar 

  • Locci R, Merlini L, Nasini G, Locci JR (1965) On a strain ofPenicillium fellutanum Biourge producing a yellow fluorescent substance. Giorn Microbiol 13:271–277

    Google Scholar 

  • Luckner M (1980) Alkaloid biosynthesis inPenicillium cycloPium—does it reflect general features of secondary metabolism? J Nat Prod 43:21–40

    Google Scholar 

  • Mantle PG (1987) Secondary metabolites ofPenicillium andAcremonium. In: Peberdy JF (ed)Penicillium andAcremonium. Plenum, New York & London, pp 161–243

    Google Scholar 

  • Marasas WFO, Nelson PE, Toussoun TA (1984) ToxigenicFusarium species. Identity and mycotoxicology. Pennsylvania State University Press, University Park, London, 328 pp

    Google Scholar 

  • Mills JT, Abramson D (1982) Ochratoxigenic potential ofPenicillium spp. isolated from stored rapeseed and cereals in western Canada. Can J Plant Sci 4:37–41

    Google Scholar 

  • Moreau C (1973) Moulds, toxins and food (transi. Moss MO). John Wiley and Sons, Chichester, New York, Brisbane, Toronto, 477 pp

    Google Scholar 

  • Nagel DW, Steyn PS, de Scott B (1972) Production of citreoviridin byPenicillium pulvillorum. Phytochem 11:627–630

    Google Scholar 

  • Nelson TS, Beasley JN, Kirby LK, Johnson ZB, Ballam GC (1980) Isolation and characterisation of citrinin produced byPenicillium lanosum. Poultry Sci 59:2055–2059

    Google Scholar 

  • Ohmomo S, Sugita M, Abe M (1973) Isolation of cyclopiazonic acid, cyclopiazonic acid imine and bissecodehydro-cyclopiazonic acid from the cultures ofAspergillus versicolor (Vuill.) Tiraboschi. J Agric Chem Soc Japan 47:57–93

    Google Scholar 

  • Onions AHS (1982) Catalogue of the culture collection of the Commonwealth Mycological Institute, 8 ed, CAB International Mycological Institute, Kew, 298 pp

    Google Scholar 

  • Onions AHS, Brady BL (1987) Taxonomy ofPenicillium andAcremonium. In: Peberdy JF (ed) Penicillium and Acremonium. Plenum, New York, London, pp. 1–36

    Google Scholar 

  • Orth R (1977) Mycotoxins ofAspergillus oryzae strains for use in the food industry as starters and enzyme producing molds. Ann Nutr Aliment 31:617–624

    PubMed  Google Scholar 

  • Paterson RRM, Simmonds MSJ, Blaney WM (1987) Mycopesticidal effects of characterized extracts ofPenicillium isolates and purified secondary metabolites (Including mycotoxins) onDrosophila melanogaster andSpodoptora littoralis. J Invert Pathol 50:124–133

    Google Scholar 

  • Patterson DSP, Roberts BA, Shreeve BJ, McDonald SM, Hayes AW (1979) Tremorgenic toxins produced by soil fungi. Appl Environ Microbiol 37:172–173

    PubMed  Google Scholar 

  • Pitt JI (1979a)Penicillium crustosum andPenicillium simplicissimum, the correct names for two common species producing tremorgenic mycotoxins. Mycologia 71:1166–1177

    Google Scholar 

  • — (1979b) The genusPenicillium and its teleomorphic statesEupenicillium andTalaromyces. Academic Press, London, 634 pp

    Google Scholar 

  • Pollock AV (1947) Production of citrinin by five speciesof Penicillium. Nature 160:331–332

    Google Scholar 

  • Polonelli L, Morace G, Rosa R, Castagnola M, Frisvad JC (1987) Antigenic characterization ofPenicillum camemberti and related common cheese contaminants. Appl Environ Microbiol 53:872–878

    PubMed  Google Scholar 

  • Quintanilla JA (1983) Un nuovo productor de ácido ciclopáldico:Penicillium viridicatum Westling. Avan Nutr Mej Anim 24:405–410

    Google Scholar 

  • Raper KB, Fenneil DI (1965) The genusAspergillus. Williams and Wilkins, Baltimore, 686 pp

    Google Scholar 

  • Raper KB, Thom C (1949) A manual of the penicillia. Williams and Wilkins, Baltimore, 875 pp

    Google Scholar 

  • Rehm H-J (1972) Mycotoxine in Lebensmitteln. VI. Mitteilung. Aflatoxinbildung verschiedener Pilzarten. Z Lebensm Unters-Forsch 150:146–151

    Google Scholar 

  • Robbers JE, Strauss JW, Tuite J (1975) The isolation of brevianamide A fromPenicillium ochraceum. J Nat Prod 38:355–356

    Google Scholar 

  • Saito M, Enomoto M, Tatsuno T (1971) Yellowed rice toxins. Luteoskyrin and related compounds, chlorine containing compounds, and citrinin. In: Ciegler A, Kadis S, Ajl SJ (eds) Microbial toxins. Vol. VI. Fungal toxins. Academic Press, New York, London, pp 299–380

    Google Scholar 

  • Samson RA, Gams W (1984) The taxonomic situation in the hyphomycete generaPenicillium, Aspergillus andFusarium. Antonie van Leeuwenhoek 50:815–824

    PubMed  Google Scholar 

  • Samson RA, Pitt JI (1985) Advances inPenicillium andAspergillus systematics. Plenum, New York, London, 483 pp

    Google Scholar 

  • Schroeder HW, Kelton WH (1975) Production of sterigmatocystin by some species of the genusAspergillus and its toxicity to chicken embryos. Appl Environ Microbiol 30:589–591

    Google Scholar 

  • Schroeder HW, Verrett MJ (1969) Production of aflatoxin byAspergillus wentii Wehmer. Can J Microbiol 15:895–899

    PubMed  Google Scholar 

  • Scott PM, van Walbeek W, Kennedy BRC, Anyeti D (1972) Mycotoxins (ochratoxin A, citrinin, and sterigmatocystin) and toxigenic fungi in grains and other agricultural products. J Agric Food Chem 20:1103–1109

    PubMed  Google Scholar 

  • Shimoda C (1951) An antibiotic substance, oryzacidin, against sake-putrefying bacteria, produced byAspergillus oryzae. I. Isolation of oryzacidin. J Agr Chem Soc Japan 25:254–260

    Google Scholar 

  • Sigg HP (1963) Die Konstitution von Frequentin. Helv Chim Acta 46:1061–1065

    Google Scholar 

  • Singleton VL, Bohonos N, Ullstrup AJ (1958) Decumbin, a new compound from a speciesof Penicillium. Nature 181:1072–1073

    PubMed  Google Scholar 

  • Springer JP, Clardy J, Wells JM, Cole RJ, Kirksey JW, MacFarlane RD, Torgeson DF (1976) Isolation and structure determination of the mycotoxin chaetoglobosin C, a new (13) cytochalasin. Tetrahedron Lett 1976:2531–2534

    Google Scholar 

  • Stolk AC, Samson RA (1983) The ascomycete genusEupenicillium and relatedPenicillium anamorphs. Stud Mycol (Baarn) 23:1–149

    Google Scholar 

  • Suzuki T, Takeda M, Tanabe H (1971) A new mycotoxin produced byAspergillus clavatus, Chem Pharm Bull 19:1786–1788

    PubMed  Google Scholar 

  • Szebiotko K, Chelkowski J, Dopierala B, Godlewska B, Radomyska W (1981) Mycotoxins in cereal grain Part I. Ochratoxin, citrinin, sterigmatocystin, penicillic acid and toxigenic fungi in cereal grain. Nahrung 25:415–421

    PubMed  Google Scholar 

  • Tandan RN, Nigam SS, Agarwall PN (1969) Biosynthesis of citrinin by the fungusAspergillus candidus. Lab J Sci Techaol 7-6:263–265

    Google Scholar 

  • Timonin MI, Rouatt JW (1944) Production of citrinin byAspergillus species of theCandidus group. Can J Publ Health 35:80–88

    Google Scholar 

  • Tsunoda H, Kishi K, Okubo K, Tatsuno T, Ohtsubo K (1977) Morphology and culture ofPenicillium ochraceum andP. carneolutescens inPenicillium, Asymmetrica-Fasciculata group I. Proc Jap Assoc Mycotoxicoi 5/6:11–13

    Google Scholar 

  • Turner WB (1971) Fungal metabolites. Academic Press, London, New York, 446 pp

    Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II. Academic Press, London, New York, 631 pp

    Google Scholar 

  • Udagawa K, Abe S (1961) Production of griseofulvin by some strains of the genusPenicillium. J Antibiot ser A 14:215–220

    Google Scholar 

  • Vesonder RF, Tjarks L, Rohwedder W, Kieswetter DO (1980) Indol metabolites fromPenicillium cyclopium NRRL 6093. Experientia 36:1308

    Google Scholar 

  • Wagener RE, Davis ND, Diener UL (1980) Penitrem A and roquefortine production byPenicillium commune. Appl Environ Microbiol 39:882–887

    Google Scholar 

  • Wells JM, Cole RJ (1977) Production of penitrem A and of an unidentified toxin byPenicillium lanosocoeruleum isolated from weevil-damaged pecans. Phytopathology 67:779–782

    Google Scholar 

  • Wells JM, Payne JA (1976) Toxigenic species ofPenicillium, Fusarium andAspergillus from weevil-damaged pecans. Can J Microbiol 22:281–285

    PubMed  Google Scholar 

  • Wicklow DT (1984) A citreoviridin-producing fungus, NRRL 1 3013, from pecan fragments is notPenicillium charlesii. Mycologia 76:943–944

    Google Scholar 

  • Wilson BJ, Wilson CH, Hayes AW (1968) Tremorgenic toxin fromPenicillium cyclopium grown on food materials. Nature 220:77–78

    Google Scholar 

  • Yoshizawa T, Morooka N, Sawada Y, Udagawa S-I (1976) Tremorgenic mycotoxin fromPenicillium paraherquei. Appl Environ Microbiol 32:441–442

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisvad, J.C. The connection between the Penicillia and Aspergilli and mycotoxins with special emphasis on misidentified isolates. Arch. Environ. Contam. Toxicol. 18, 452–467 (1989). https://doi.org/10.1007/BF01062373

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062373

Keywords

Navigation