Skip to main content
Log in

Flexible feeding patterns of copepod Centropages tenuiremis in fluctuating conditions: a possible survival strategy to cope with disturbance

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Centropages tenuiremis is a species with a wide distribution range in disturbed coastal waters. However, due to a lack of dietary information, it remains unclear as to how they maintain such dominance in fluctuating conditions. In this study, C. tenuiremis was collected from the Daya Bay Nuclear Power Plant both in inlet and outfall regions at 06:00, 12:00 and 18:00 on April 27, 2011 and their in situ diet was analyzed using a PCR protocol targeting 18S ribosomal genes. Thirty-four species of prey organisms were identified totally, including Dinophyta, Baciliariophyta, Viridiplantae, Rhizaria, Apicomplexa, Chordata, Mollusca, Arthropoda and Fungi, indicating an obvious omnivorous feeding habit of C. tenuiremis. Centropages tenuiremis obviously exhibited spatial and temporal variations in diet composition. More plant prey (land plants and phytoplankton) were consumed in the morning (~50%), while more animal prey (metazoans and protozoans) were ingested at midday and night (60%–70%). Furthermore, a more diverse diet was detected in the outfall region (10–11 taxa), where the temperatures were relatively higher and more fluctuating, than in the control region (5–10 taxa). This finding indicated that C. tenuiremis could potentially expand its food spectrum under stressful condition. Specifically, C. tenuiremis exhibited phytoplankton preference (58.62%–67.64%) in the outfall region with a lower omnivory index (0.27–0.35) than in the control region (0.51–0.95). However, phytoplankton density was lower than that in the control region, suggesting a possible herbivorous tendency of C. tenuiremis under elevated temperatures to balance the energy acquirement and feeding effort. The flexible food choices of C. tenuiremis observed here could effectively buffer environmental fluctuations and might be an important survival strategy in coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbier E B, Hacker S D, Kennedy C, et al. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2): 169–193, doi: 10.1890/10-1510.1

    Article  Google Scholar 

  • Benedetti F, Gasparini S, Ayata S D. 2016. Identifying copepod functional groups from species functional traits. Journal of Plankton Research, 38(1): 159–166, doi: 10.1093/plankt/fbv096

    Article  Google Scholar 

  • Boersma M, Mathew K A, Niehoff B, et al. 2016. Temperature driven changes in the diet preference of omnivorous copepods: no more meat when it's hot?. Ecology Letters, 19(1): 45–53, doi: 10.1111/ ele.12541

    Article  Google Scholar 

  • Calbet A. 2001. Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnology and Oceanography, 46(7): 1824–1830, doi: 10.4319/lo.2001. 46.7.1824

    Article  Google Scholar 

  • Calbet A, Carlotti F, Gaudy R. 2007. The feeding ecology of the copepod Centropages typicus (Kröyer). Progress in Oceanography, 72(2-3): 137–150, doi: 10.1016/j.pocean.2007.01.003

    Article  Google Scholar 

  • Carlotti F, Harris R. 2007. The biology and ecology of Centropages typicus: an introduction. Progress in Oceanography, 72(2-3): 117–120, doi: 10.1016/j.pocean.2007.01.012

    Article  Google Scholar 

  • Carstensen J, Klais R, Cloern J E. 2015. Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuarine, Coastal and Shelf Science, 162: 98–109, doi: 10.1016/j.ecss.2015.05.005

    Article  Google Scholar 

  • Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11(4): 265–270

    Google Scholar 

  • Christensen V, Pauly D. 1992. ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling, 61(3-4): 169–185, doi: 10.1016/0304-3800(92)90016-8

    Article  Google Scholar 

  • Daan R, Gonzalez S R, Klein Breteler W C M. 1988. Cannibalism in omnivorous calanoid copepods. Marine Ecology Progress Series, 47: 45–54, doi: 10.3354/meps047045

    Article  Google Scholar 

  • Dagg M. 1977. Some effects of patchy food environments on copepods. Limnology and Oceanography, 22(1): 99–107, doi: 10.4319/lo.1977.22.1.0099

    Article  Google Scholar 

  • Floeter S R, Behrens M D, Ferreira C E L, et al. 2005. Geographical gradients of marine herbivorous fishes: patterns and processes. Marine Biology, 147(6): 1435–1447, doi: 10.1007/s00227-005-0027-0

    Article  Google Scholar 

  • Gao Yahui, Li Song. 1990. Observational experiments on feeding rates of Centropages tenuiremis. Tropic Oceanology (in Chinese), 9(3): 59–65

    Google Scholar 

  • Garrido S, Cruz J, Santos A M P, et al. 2013. Effects of temperature, food type and food concentration on the grazing of the calanoid copepod Centropages chierchiae. Journal of Plankton Research, 35(4): 843–854, doi: 10.1093/plankt/fbt037

    Article  Google Scholar 

  • Gaudy R, Thibault-Botha D. 2007. Metabolism of Centropages species in the Mediterranean Sea and the North Atlantic Ocean. Progress in Oceanography, 72(2-3): 151–163, doi: 10.1016/j.pocean. 2007.01.005

    Article  Google Scholar 

  • Guo Zhiling, Liu Sheng, Hu Simin, et al. 2012. Prevalent ciliate symbiosis on copepods: high genetic diversity and wide distribution detected using small subunit ribosomal RNA gene. PLoS One, 7(9): e44847, doi: 10.1371/journal.pone.0044847

    Google Scholar 

  • Han Wuying, Ma Kemei. 1991. Study on the process of sea water exchang in Daya Bay. Marine Sciences, (2): 64–67

    Google Scholar 

  • Hoppenrath M, Leander B S. 2006. Dinoflagellate, Euglenid, or Cercomonad? The ultrastructure and molecular phylogenetic position of Protaspis grandis n. sp. The Journal of Eukaryotic Microbiology, 53(5): 327–342, doi: 10.1111/j.1550-7408.2006.00110.x

    Article  Google Scholar 

  • Hu Simin, Guo Zhiling, Li Tao, et al. 2014. Detecting in situ copepod diet diversity using molecular technique: development of a copepod/symbiotic ciliate-excluding eukaryote-inclusive PCR protocol. PLoS One, 9(7): e103528, doi: 10.1371/journal. pone.0103528

    Google Scholar 

  • Hu Simin, Guo Zhiling, Li Tao, et al. 2015. Molecular analysis of in situ diets of coral reef copepods: evidence of terrestrial plant detritus as a food source in Sanya Bay, China. Journal of Plankton Research, 37(2): 363–371, doi: 10.1093/plankt/fbv014

    Article  Google Scholar 

  • Huang Jiaqi, Zheng Zhong. 1986. The effects of temperature and salinity on the survival of some copepods from Xiamen Harbour. Oceanologia et Limnologia Sinica (in Chinese), 17(2): 161–167

    Google Scholar 

  • Jagadeesan L, Jyothibabu R, Arunpandi N, et al. 2017. Feeding preference and daily ration of 12 dominant copepods on mono and mixed diets of phytoplankton, rotifers, and detritus in a tropical coastal water. Environmental Monitoring and Assessment, 189(10): 503, doi: 10.1007/s10661-017-6215-9

    Article  Google Scholar 

  • Kiørboe T. 2011. How zooplankton feed: mechanisms, traits and trade-offs. Biological Reviews, 86(2): 311–339, doi: 10.1111/j.1469-185X.2010.00148.x

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Tiselius P, et al. 2018. Adaptive feeding behavior and functional responses in zooplankton. Limnology and Oceanography, 63(1): 308–321, doi: 10.1002/lno.10632

    Article  Google Scholar 

  • Kondoh M. 2003. Foraging adaptation and the relationship between food-web complexity and stability. Science, 299(5611): 1388–1391, doi: 10.1126/science.1079154

    Article  Google Scholar 

  • Larsen P S, Madsen C V, Riisgård H U. 2008. Effect of temperature and viscosity on swimming velocity of the copepod Acartia tonsa, brine shrimp Artemia salina and rotifer Brachionus plicatilis. Aquatic Biology, 4(1): 47–54

    Article  Google Scholar 

  • Lee Shaoching. 1964. Preliminary studies on the food and feeding habits of some marine planktonic copepods in Amoy waters. Journal of Xiamen University (Natural Science) (in Chinese), 11(3): 93–109

    Google Scholar 

  • Li Wei, Gao Kunshan. 2012. A marine secondary producer respires and feeds more in a high CO2 ocean. Marine Pollution Bulletin, 64(4): 699–703, doi: 10.1016/j.marpolbul.2012.01.033

    Article  Google Scholar 

  • Li Tao, Liu Sheng, Huang Liangmin, et al. 2011. Diatom to dinoflagellate shift in the summer phytoplankton community in a bay impacted by nuclear power plant thermal effluent. Marine Ecology Progress Series, 424: 75–85, doi: 10.3354/meps08974

    Article  Google Scholar 

  • Li Kaizhi, Yin Jianqiang, Tan Yehui, et al. 2014. Short-term variation in zooplankton community from Daya Bay with outbreaks of Penilia avirostris. Oceanologia, 56(3): 583–602

    Google Scholar 

  • Lin Hui. 2016. Composition and size distribution of colloidal organic matter in the Chukchi Sea and Daya Bay: application of asymmetric flow field-flow fractionation (in Chinese) [dissertation]. Xiamen: Xiamen University

    Google Scholar 

  • Lin Xianzhi, Hu Simin, Liu Sheng, et al. 2018. Unexpected prey of juvenile spotted scat (Scatophagus argus) near a wharf: the prevalence of fouling organisms in stomach contents. Ecology and Evolution, 8(16): 8547–8554, doi: 10.1002/ece3.4380

    Article  Google Scholar 

  • Liu Guangxing, Li Song. 1998. Seasonal variations in body length and weight and ingestion rate of Centropages tenuiremis thompson and scott. Haiyang Xuebao (in Chinese), 20(3): 104–109

    Google Scholar 

  • Liu Huaxue, Li Kaizhi, Huang Honghui, et al. 2013. Seasonal community structure of mesozooplankton in the Daya Bay, South China Sea. Journal of Ocean University of China, 12(3): 452–458, doi: 10.1007/s11802-013-1991-5

    Article  Google Scholar 

  • Ma Aijun, Wang Xin’an, Zhuang Zhimeng, et al. 2007. Structure of retina and visual characteristics of the half-smooth tongue-sole Cynoglossus semilaevis Günter. Acta Zoologica Sinica (in Chinese), 53(2): 354–363

    Google Scholar 

  • Madden N, Lewis A, Davis M. 2013. Thermal effluent from the power sector: an analysis of once-through cooling system impacts on surface water temperature. Environmental Research Letters, 8(3): 035006, doi: 10.1088/1748-9326/8/3/035006

    Google Scholar 

  • Masclaux H, Bec A, Kagami M, et al. 2011. Food quality of anemophilous plant pollen for zooplankton. Limnology and Oceanography, 56(3): 939–946, doi: 10.4319/lo.2011.56.3.0939

    Article  Google Scholar 

  • Masclaux H, Perga ME, Kagami M, et al. 2013. How pollen organic matter enters freshwater food webs. Limnology and Oceanography, 58(4): 1185–1195, doi: 10.4319/lo.2013.58.4.1185

    Article  Google Scholar 

  • Perez-Moreno J, Read D J. 2001. Exploitation of pollen by mycorrhizal mycelial systems with special reference to nutrient recycling in boreal forests. Proceedings of the Royal Society of London B: Biological Sciences, 268(1474): 1329–1335, doi: 10.1098/rspb.2001. 1681

    Article  Google Scholar 

  • Quéméré E, Hibert F, Miquel C, et al. 2013. A DNA metabarcoding study of a primate dietary diversity and plasticity across its entire fragmented range. PLoS One, 8(3): e58971, doi: 10.1371/journal. pone.0058971

    Google Scholar 

  • Richardson A J. 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science, 65(3): 279–295, doi: 10.1093/icesjms/ fsn028

    Article  Google Scholar 

  • Saage A, Vadstein O, Sommer U. 2009. Feeding behaviour of adult Centropages hamatus (Copepoda, Calanoida): functional response and selective feeding experiments. Journal of Sea Research, 62(1): 16–21, doi: 10.1016/j.seares.2009.01.002

    Article  Google Scholar 

  • Saiz E, Calbet A. 2011. Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia, 666(1): 181–196, doi: 10.1007/s10750-010-0421-6

    Article  Google Scholar 

  • Shannon C E, Weaver W. 1949. The Mathematical Theory of Communication. Urbana: University of Illinois Press, 6–28

    Google Scholar 

  • Simpson E H. 1949. Measurement of diversity. Nature, 163(4148): 688, doi: 10.1038/163688a0

    Article  Google Scholar 

  • Taylor J D, Cottingham S D, Billinge J, et al. 2014. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. The ISME Journal, 8(1): 245–248, doi: 10.1038/ismej.2013.178

    Article  Google Scholar 

  • Troedsson C, Grahl-Nielsen O, Thompson E M. 2005. Variable fatty acid composition of the pelagic appendicularian Oikopleura dioica in response to dietary quality and quantity. Marine Ecology Progress Series, 289: 165–176, doi: 10.3354/meps289165

    Article  Google Scholar 

  • Yabuki A, Ishida KI. 2011. Mataza hastifera n. g., n. sp.: a possible new lineage in the Thecofilosea (Cercozoa). The Journal of Eukaryotic Microbiology, 58(2): 94–102, doi: 10.1111/j.1550-7408.2010.00524.x

    Article  Google Scholar 

  • Yang Jiming. 2001. A study on food and trophic levels of Bohai Sea copepoda. Modern Fisheries Information (in Chinese), 16(6): 6–10

    Google Scholar 

  • Yang Yufeng, Wang Zhaoding, Pan Mingxiang, et al. 2002. Zooplankton community structure of the sea surface microlayer near nuclear power plants and marine fish culture zones in Daya Bay. Chinese Journal of Oceanology and Limnology, 20(2): 129–134, doi: 10.1007/BF02849649

    Article  Google Scholar 

  • Yu Juan, Zhang Yu, Yang Guipeng, et al. 2012. Effects of diet, temperature and salinity on ingestion and egestion of two species of marine copepods. Periodical of Ocean University of China (in Chinese), 42(7-8): 45–52

    Google Scholar 

  • Zhang Wenquan, Zhou Ruming. 2004. Thermal impact analysis of discharge of circulating cooling water at Daya Bay nuclear power station (GNPS) and Ling Ao nuclear power station (LNPS). Radialization Protection (in Chinese), 24(3-4): 257–263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Liu.

Additional information

Foundation item: The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No. XDA13020100; the National Key Research and Development Project of China under contract No. 2016YFC0502800; the Science and Technology Planning Projects of Guangdong Province, China under contract Nos 2015A020216013 and 2017B030314052.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Hu, S., Guo, Z. et al. Flexible feeding patterns of copepod Centropages tenuiremis in fluctuating conditions: a possible survival strategy to cope with disturbance. Acta Oceanol. Sin. 39, 59–68 (2020). https://doi.org/10.1007/s13131-020-1553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-020-1553-9

Key words

Navigation